
ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 19

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 2

Lecture 19: Overview

• Course Administration
• Final course evaluation

• Final exam

• Project Discussion
– A1: Introduction of Canny Edge Detector application

– A2: Clean C++ model with static memory allocation

– A4: From single image to video stream processing

– A5: Test bench model in SystemC

– A6: Structural DUT module and algorithm profiling

– A7: Performance measurement on prototyping board

– A8: Pipelined and parallel model with back-annotated timing

– A9: Throughput optimization by pipeline load balancing

Discussion

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 3

Course Administration

• Final Course Evaluation
– Open until end of 10th week (Sunday night)

– Nov. 25, 2019, through Dec. 8, 2019, 11:45pm

– Online via EEE Evaluation application

• Mandatory Evaluation of Course and Instructor
– Voluntary

– Anonymous

– Very valuable

• Please spend 5 minutes for this survey!
– Your feedback is appreciated!

Course Administration

• Final Exam
– Allocated time

• Monday, December 9, 2019, 8:00-10:00am

– Location
• Regular classroom, DBH 1200

– Format: Written Exam
• Exam sheet with questions

• Answers to be filled in

• Open notes, open course materials

• Open laptop, open browser, open server login

• No emails, no instant messaging!

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 3

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital camera

– Application source and documentation:
• John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI, 1986.

• http://en.wikipedia.org/wiki/Canny_edge_detector

• ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 5

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

Project Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application, determine function-call tree

• Deliverables
– Source code and text file: canny.c, canny.txt

• Due
– Wednesday, October 9, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 4

Project Assignment 2

• Task: Clean C++ model with static memory allocation
– Prepare the C++ source code for modeling in SystemC

– Configure parameters for specific application

– Apply static memory allocation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Source code and text file: canny.cpp, canny.txt

• Due
– Wednesday, October 16, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 7

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 8

Engineering012.png Engineering012_edges.pgm

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 5

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Steps
1. Extract 30 of video frames suitable for use in a test bench

2. Convert the color frames to grey-scale images in PGM format

3. Recode your Canny C++ model to process the video frames
 To run Canny application successfully, increase stack size

 Adjust Canny parameters for the “best looking” output images

• Deliverables
– Source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, October 30, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 9

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Bonus (20% extra credit)
1. Take your own video (e.g. with your phone camera)

2. Cut out a short sequence of 30 frames

3. Convert the resolution to 2704x1520 pixels (or similar)

4. Follow the regular steps outlined on the previous slide

5. Make the frames available to TA for grading
 mkdir ~/video/

 Store frames in the directory
 chmod –R ugo+rX ~/video/

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 10

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 6

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Convert C++ model to SystemC model

– Add a test bench structure around the C++ model

– Wrap DUT into a platform model with explicit I/O units

• Steps
1. Create test bench structure: Stimulus, Platform, Monitor

2. Create platform model: DataIn, DUT, DataOut
3. Localize functions and use sc_fifo channels for communication

 Pay attention to stack sizes for every thread

• Deliverables
– SystemC source code and text file: Canny.cpp, Canny.txt

• Due
– Wednesday, November 6, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 11

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Expected instance tree

Top top

|------ Monitor monitor

|------ Platform platform

| |------ DUT canny

| |------ DataIn din

| |------ DataOut dout

| |------ sc_fifo<IMAGE> q1

| \------ sc_fifo<IMAGE> q2

|------ Stimulus stimulus

|------ sc_fifo<IMAGE> q1

\------ sc_fifo<IMAGE> q2

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 12

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 7

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Discussion on whiteboard: Top-level and Platform structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 13

White board photo goes here!

Project Assignment 5

• Task: Test bench for the Canny Edge Detector
– Expected graphical structure with RISC v0.5.0 visual tool

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 14

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 8

Project Assignment 6

• Task: Structural refinement of the DUT module
– Refine the structural hierarchy of the DUT module

– Refine the structural hierarchy of the Gaussian Smooth module

– Profile the relative complexity of the Canny functions

• Steps
1. Create structure in DUT: Gaussian Smooth, …, Apply Hysteresis

2. Create structure in Gaussian Smooth: Input, Gauss, BlurX, BlurY

3. Profile the algorithm, obtain relative computational complexity

• Deliverables
– Canny.cpp (refined structural model)

– Canny.txt (profile of relative complexity of the DUT modules)

• Due
– Wednesday, November 13, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 15

Project Assignment 6

• Step 1: Refined structure of the DUT module
– Expected module instance tree

Platform platform

|------ DataIn din

|------ DUT canny

| |------ Gaussian_Smooth gaussian_smooth

| |------ Derivative_X_Y derivative_x_y

| |------ Magnitude_X_Y magnitude_x_y

| |------ Non_Max_Supp non_max_supp

| \------ Apply_Hysteresis apply_hysteresis

\------ DataOut dout

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 16

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 9

Project Assignment 6

• Step 2: Refined structure of the Gaussian Smooth block
– Expected module instance tree

DUT canny

|------ Gaussian_Smooth gaussian_smooth

| |------ Receive_Image receive

| |------ Gaussian_Kernel gauss

| |------ BlurX blurX

| \------ BlurY blurY

|------ Derivative_X_Y derivative_x_y

|------ Magnitude_X_Y magnitude_x_y

|------ Non_Max_Supp non_max_supp

\------ Apply_Hysteresis apply_hysteresis

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 17

Project Assignment 6

• Task: Structural model of the Canny Edge Detector
– Discussion on whiteboard: Refined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 18

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 10

Project Assignment 6

• Task: Structural model of the Canny Edge Detector
– Expected DUT structure with RISC v0.5.0 visual tool

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 19

Project Assignment 6

• Step 3: Profile the Canny functions
 Performance profiling of the Canny Edge Detector

 Determine the relative complexity of the Canny functions
• Is there any performance bottleneck?

• If so, where?

– Use the GNU C/C++ profiling tools
 g++ -pg

 gprof

1. Compile the SystemC source code with option -pg

2. Run the simulation once with instrumentation,
obtain gmon.out

3. Run the profiler: gprof Canny

4. Validate the reported call tree
5. Analyze the “flat profile” for the DUT components (self)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 20

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 11

Project Assignment 6

• Step 3: Profile the Canny functions,
obtain relative computational complexity

– Profiled complexity comparison (in Canny.txt):

Gaussian_Smooth 40.57%

|------ Gaussian_Kernel 0.00%

|------ BlurX 17.23%

\------ BlurY 23.34%

Derivative_X_Y 6.26%

Magnitude_X_Y 15.90%

Non_Max_Supp 23.98%

Apply_Hysteresis 12.29%

100%

 Profiling results vary, but Gaussian Smooth is a bottleneck!

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 21

Project Assignment 7

• Task: Performance measurement on prototyping board
– Run C++ model of Canny Edge Detector on Raspberry Pi

– Obtain absolute timing measurements of Canny functions

• Steps
1. Prepare the prototyping board with Raspbian operating system
2. Upload Canny.cpp from Assignment 4 and compile it

3. Instrument the source code with real-time measurements

4. Note the computation delays of the major Canny functions

• Deliverables
– Canny.cpp (model instrumented with timing measurements)

– Canny.txt (table of measured delays)

• Due
– Wednesday, November 20, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 22

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 12

Project Assignment 7

• Task: Performance measurement on prototyping board
– Measured delays on Raspberry Pi 3 (in Canny.txt):

Gaussian_Smooth 3.53 sec

|------ Gaussian_Kernel 0.00 sec

|------ BlurX 1.71 sec

\------ BlurY 1.82 sec

Derivative_X_Y 0.48 sec

Magnitude_X_Y 1.03 sec

Non_Max_Supp 0.83 sec

Apply_Hysteresis 0.67 sec

TOTAL 6.54 sec

 This performance is far too slow for real-time video!

 Discussion: What options exist to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 23

Project Assignment 7

• Discussion: Measured delays on Raspberry Pi 3 4
– TOTAL 6.54 seconds

 This performance is far too slow
for real-time video!

 Discussion:
What options exist
to speed this up?

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 24

White board
discussion and

photo goes
here!

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 13

Project Assignment 7

• Discussion: Performance Improvement Options

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 25

White board
photo goes

here!

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Back-annotate estimated delays to observe timing in the model

– Pipeline and parallelize the model to improve throughput

• Steps
1. Instrument model with simulated time to observe frame delay

2. Back-annotate estimated timing into DUT components

3. Improve test bench to observe frame throughput

4. Pipeline the DUT into a sequence of 7 stages with buffer size 1

5. Slice the BlurX and BlurY modules into 4 parallel threads

• Deliverables
– Canny.cpp: pipelined and parallelized SystemC model

– Canny.txt: table of observed frame delays and throughput

• Due: Wednesday, November 27, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 26

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 14

Project Assignment 8

• Timed test bench model for the Canny Edge Detector
– Discussion on whiteboard: Chart of refined test bench structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 27

White board photo goes
here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Chart of pipelined DUT structure

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 28

White board photo goes here!

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 15

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Parallel BlurX, BlurY functions (step 5)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 29

White board
photo goes

here!

White board
photo goes

here!

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Discussion on whiteboard: Parallel BlurX, BlurY functions (step 5)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 30

White board
photo goes

here!

White board
photo goes

here!

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 16

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Back-annotation of measured timing delays

 4-way parallelization of BlurX and BlurY modules (step 5)

Receive, Make_Kernel 0 ms 0 ms
BlurX 1710 ms 427 ms
BlurY 1820 ms 455 ms
Derivative_X_Y 480 ms 480 ms
Magnitude_X_Y 1030 ms 1030 ms
Non_Max_Supp 830 ms 830 ms
Apply_Hysteresis 670 ms 670 ms

======= =======
TOTAL: 6540 ms 3892 ms

======= =======

Throughput: 1/1820ms 1/1030ms
0.549 FPS 0.971 FPS

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 31

Project Assignment 8

• Pipelined and parallel model of the Canny Edge Detector
– Expected execution log with timing (after step 5)

0 s: Stimulus sent frame 1.
0 s: Stimulus sent frame 2.
0 s: Stimulus sent frame 3.

[...]
3422 ms: Stimulus sent frame 16.
3892 ms: Monitor received frame 1 with 3892 ms delay.
[...]
30672 ms: Monitor received frame 27 with 15920 ms delay.
30672 ms: 1.030 seconds after previous frame, 0.971 FPS.
31702 ms: Monitor received frame 28 with 15920 ms delay.
31702 ms: 1.030 seconds after previous frame, 0.971 FPS.
32732 ms: Monitor received frame 29 with 15920 ms delay.
32732 ms: 1.030 seconds after previous frame, 0.971 FPS.
33762 ms: Monitor received frame 30 with 15920 ms delay.
33762 ms: Monitor exits simulation.

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 32

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 17

Project Assignment 8

• Task: Pipelining and parallelization of the DUT module
– Expected simulated performance values (in Canny.txt):

Model Frame Delay Throughput Total

CannyA8_step1 0 ms 0 ms

CannyA8_step2 15860 ms 59320 ms

CannyA8_step3 15860 ms 0.549 FPS 59320 ms

CannyA8_step4 15860 ms 0.549 FPS 59320 ms

CannyA8_step5 15920 ms 0.971 FPS 33762 ms

(values based on Raspberry Pi 3 measurements)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 33

Project Assignment 9

• Task: Throughput optimization by pipeline load balancing
– Optimize the bottleneck stages to improve throughput

• Steps
1. Apply compiler optimizations for maximum execution speed

 Try GNU compiler options -O2, -O3, and others

 Back-annotate the best performance you can find

2. Consider fixed-point instead of floating-point arithmetic
 Use fixed-point arithmetic in NMS module

 Evaluate the trade-off between speed and accuracy

• Deliverables
– Canny.cpp (final SystemC model with best performance)

– Canny.txt (performance table, design decisions, reasoning)

• Due
– Wednesday, December 4, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 34

ECPS203: Embedded Systems Modeling and Design Lecture 19

(c) 2019 R. Doemer 18

Project Assignment 9

• Step 1: Apply compiler optimizations
to improve throughput

– Try GNU compiler options
• -O2, -O3, and others

– Back-annotate the best performance you can find
• Improvement will be different for different modules

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 35

White board photo
goes here!

Project Assignment 9

• Step 2: Consider fixed-point calculations
instead of floating-point arithmetic

– Focus on Non_Max_Supp module only

– Convert float type variables to int types

– Replace these lines of code…
xperp = -(gx = *gxptr)/((float)m00);

yperp = (gy = *gyptr)/((float)m00);

– … with this code
gx = *gxptr;

gy = *gyptr;

xperp = -(gx<<16)/m00;

yperp = (gy<<16)/m00

– Measure the timing difference on the prototyping board
– Measure and evaluate the image quality (ImageDiff)

ECPS203: Embedded Systems Modeling and Design, Lecture 19 (c) 2019 R. Doemer 36

