
ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 1

ECPS 203
Embedded Systems Modeling and Design

Lecture 8

Rainer Dömer

doemer@uci.edu

Center for Embedded and Cyber-physical Systems
University of California, Irvine

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 2

Lecture 8: Overview

• Course Administration
– Midterm course evaluation

• SystemC Simulation Semantics
– Motivating Examples

– Discrete Event Simulation Algorithm

• Project Discussion
– Status and next steps

– Assignment 4



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 2

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 3

Course Administration

• Midterm Course Evaluation
– One week, starting today!

• Wednesday, Oct. 23, 8am – Tuesday, Oct. 29, 8pm

– Online via EEE+ Evaluations

• Feedback from students to instructors
– Completely voluntary

– Completely anonymous

– Very valuable
• Help to improve this class!

• Final Course Evaluation
– expected for week 10 (TBA)

• Motivating Example 1
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{
x = 6;

};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 4

SystemC Simulation Semantics

SC_MODULE(Top)     
{
int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ th1();
th2();

}
};

void Top::th1(void)
{
x = 5;

};



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 3

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 5

SystemC Simulation Semantics

• Motivating Example 2
– Given:

– What is the value of x at the end of simulation?

– Answer: The model is non-deterministic!
x may have the value 5 or 6.

void Top::th2(void)
{
x = 6;

};

SC_MODULE(Top)
{
int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
x = 5;

};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 6

SystemC Simulation Semantics

• Motivating Example 3
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 5

void Top::th2(void)
{
x = 6;

};

SC_MODULE(Top)
{
int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
wait(10, SC_NS);
x = 5;

};



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 4

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 7

SystemC Simulation Semantics

• Motivating Example 4
– Given:

– What is the value of x at the end of simulation?

– Answer: The model is non-deterministic!
x may have the value 5 or 6.

void Top::th2(void)
{
wait(10, SC_NS);
x = 6;

};

SC_MODULE(Top)
{
int x;

void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
wait(10, SC_NS);
x = 5;

};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 8

SystemC Simulation Semantics

• Motivating Example 5
– Given:

– What is the value of x at the end of simulation?

– Answer: The model is non-deterministic!
x may have the value 5 or 6
(immediate notification may get lost!)

void Top::th2(void)
{
wait(e);
x = 6;

};

SC_MODULE(Top)
{
int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
x = 5;
e.notify();

};



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 5

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 9

SystemC Simulation Semantics

• Motivating Example 6
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{
wait(e);
x = 6;

};

SC_MODULE(Top)
{
int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
x = 5;
e.notify(

SC_ZERO_TIME);
};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 10

SystemC Simulation Semantics

• Motivating Example 7
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{
wait(e);
x = 6;

};

SC_MODULE(Top)
{
int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
e.notify(

SC_ZERO_TIME);
x = 5;

};



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 6

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 11

SystemC Simulation Semantics

• Motivating Example 8
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 6

void Top::th2(void)
{
wait(e);
x = 6;

};

SC_MODULE(Top)
{
int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
wait(10, SC_NS);
x = 5;
e.notify(

SC_ZERO_TIME);
};

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 12

SystemC Simulation Semantics

• Motivating Example 9
– Given:

– What is the value of x at the end of simulation?

– Answer: x = 5
Thread th2 never completes,
notified event e expires and is lost!

void Top::th2(void)
{
wait(10, SC_NS);
wait(e);
x = 6;

};

SC_MODULE(Top)
{
int x;
sc_event e;
void th1(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2);

}
};

void Top::th1(void)
{
x = 5;
e.notify(

SC_ZERO_TIME);
};



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 7

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 13

SystemC Simulation Semantics

• Discrete Event Simulation (DES) Algorithm
– described in SystemC LRM (but noted in a different format)

 abstract definition defines a set of valid implementations

 intentionally defined with non-deterministic thread ordering

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (aka. RUNNABLE)
• WAIT: set of threads suspended by wait(event)
• WAITTIME: set of threads suspended by wait(time)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 14

SystemC Simulation Semantics

• Discrete Event Simulation (DES) Algorithm

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITTIME

wait(e)

wait(t)

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITTIME to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO

E
valuation phase

D
elta C

ycle

T
im

e C
ycle



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 8

SystemC Simulation Semantics

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 15

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Discrete Event Simulation (DES)

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Reference Simulator
– IEEE SystemC specifies

cooperative multi-threading

 A single thread is active at any time
(even if multiple cores are available)

– Example: Execution of four threads

th0

SystemC Simulation Semantics

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 16

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Accellera SystemC

Proof-of-Concept Library

 uses an extra root thread
for the following tasks:
– Elaboration phase

– Scheduling

• Event notifications

• Channel updates

• Delta cycle updates

• Simulation time updates

– SC_METHOD calls

• (not shown)



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 9

SystemC Simulation Semantics

• Discrete Event Simulation (DES) Algorithm
– The SystemC Scheduler (by Doulos)

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 17

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital camera

– Application source and documentation:
• John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI, 1986.

• http://en.wikipedia.org/wiki/Canny_edge_detector

• ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 18

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 10

Project Assignment 2

• Task: Clean C++ model with static memory allocation
– Prepare the C++ source code for modeling in SystemC

– Configure parameters for specific application

– Apply static memory allocation

• Steps
1. Fix the off-by-one bug in the non_max_supp function

2. Clean-up the code for compilation without warnings

3. Fix configuration parameters to compile-time constants

4. Remove or replace dynamic memory allocation

• Deliverables
– Source code and text file:  canny.cpp, canny.txt

• Due
– Wednesday, October 16, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 19

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone

 Process video shot by a drone flying over Engineering Plaza
 Fly a drone over UCI Engineering Plaza, take video of buildings

 Record a color video stream in high resolution

 Extract a set of video frames suitable for use in our test bench

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 20

Engineering001.bmp Engineering001_edges.pgm



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 11

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Google Map of UCI Engineering Quad

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 21

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone flights in US

require approval
by the Federal
Aviation Administration
(FAA)

– On UCI campus,
Environmental Health
& Safety (EHS)
department is in charge
of Unmanned Aircraft
Safety

 Flight request approved
• Thursday,

October 19, 2017

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 22



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 12

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone Equipment

• DJI Phantom 3 Standard Quadcopter

• Remote Control with Mobile Device

– Drone carrries a Camera attached to a Gimble
• Video stream stored on a SD memory card, e.g. DJI_0001.MOV

• Video is 30 frames per second

• Frames are 2704 by 1520 pixels

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 23

[Image source: dji.com]

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Screen Shot of Drone Control App on Mobile Device

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 24



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 13

ECPS 203 Project: Drone Flight

• Capture Video Footage of Engineering Buildings
– Drone flight demonstration (Fall 2017)

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 25

ECPS 203 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a video camera of a drone 

– Video taken by a drone flying over UCI Engineering Plaza
• Available on the server: ~ecps203/public/DroneFootage/

• High resolution, 2704 by 1520 pixes

• Representative sample, using 30 extracted frames for test bench model

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 26

Engineering012.png Engineering012_edges.pgm



ECPS203: Embedded Systems Modeling and Design Lecture 8

(c) 2019 R. Doemer 14

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Steps
1. Extract 30 of video frames suitable for use in a test bench

2. Convert the color frames to grey-scale images in PGM format

3. Recode your Canny C++ model to process the video frames
 To run Canny application successfully, increase stack size

 Adjust Canny parameters for the “best looking” output images

• Deliverables
– Source code and text file:  Canny.cpp, Canny.txt

• Due
– Wednesday, October 30, 2019, 6pm

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 27

Project Assignment 4

• Task: From Single Image to Video Stream Processing
– Prepare a sequence of image frames from the video

– Convert the Canny application to process the video frames

• Bonus (20% extra credit)
1. Take your own video (e.g. with your phone camera)

2. Cut out a short sequence of 30 frames

3. Convert the resolution to 2704x1520 pixels (or similar)

4. Follow the regular steps outlined on the previous slide

5. Make the frames available to TA for grading
 mkdir ~/video/

 Store frames in the directory
 chmod ugo+rX ~/video/

ECPS203: Embedded Systems Modeling and Design, Lecture 8 (c) 2019 R. Doemer 28


