
ECPS 203
TA: Zhongqi Cheng

Agenda

• Assignment 8
1. Add timing to your model

2. Pipelining canny

3. Parallelize BlurX and BlurY

Add timing to your model

• Suppose you have a function foo() as follows

void foo(){ ... }

you have measured the run time of
foo() on your board, and it is

10 seconds

Add timing to your model

• Back-annotate the 10 seconds into your module

SC_MODULE(M1){

void foo(){ ... }

void main(){
foo();
wait(10,SC_SEC);

}

SC_CTOR(Stimulus)
{

SC_THREAD(main);
}

}

module M1

place a

wait(10, SC_SEC)
before or after foo()

SC_FS
SC_PS
SC_NS
SC_US
SC_MS
SC_SEC

other time units in
SystemC

s1 s2s1

Design a pipeline

• Pipeline can speedup the application

• An example with a sequence of 3 input images
suppose we divide canny into 2 pipeline stages: s1, s2

canny

time

s1

canny

s2 s2

s1 for the second image and s2 for the first
image run in parallel

before pipelining

after pipelining

canny

Design a pipeline

• In our canny application, there are following stages
1. Receive_Image

2. Make_Kernel

3. BlurX

4. BlurY

5. Derivative_X_Y

6. Magnitude_X_Y

7. Non_Max_Supp

8. Apply_Hysteresis

Design a pipeline

• Between each stage, there should be a buffer. Otherwise the model
will not behave as a pipeline

• sc_fifo is the buffer.

• set the buffer size of sc_fifo to 1

Design a pipeline

DUT

Gaussian_smooth

Receive image

Make_Kernel

BlurX

BlurY Derivative_X_Y

Magnitude_X_Y

Non_Max_Supp

Apply_Hysteresis

1

2

3

4

5

6

7

8

A total of 8 stages
Arrows are sc_fifo
with buffer size =1

Design a pipeline

• Modifying the model in assignment 6

• In assignment 8, the nth stage should only output to the (n+1)th stage

Make_Kernel

BlurX

BlurY

2

3

4

In assignment 6, connections may be across two stages

Make_Kernel

BlurX

BlurY

2

3

4

In assignment 8, connection should be only between

two neighboring stages

Design a pipeline

• Add a “relaying” variable in the middle stage

add a “relaying” variable b in stage 3

int c

int a

int b

int a int b

int bint c

int c

In assignment 6, connections may be across two stages

int a

int b

int b

int a

int c

2

3

4

2

3

4

buffer
size = 2

buffer
size = 1

Parallelizing a module

• How to parallelize foo() ?

SC_MODULE(M1){

void foo(){
for(int i=0;i<LEN;i++)

array_out[i]=x[i]+1;
}

void main(){
In.read(x);
foo();
wait(10,SC_SEC);
Out.write(array_out)

}
SC_CTOR(Stimulus)
{

SC_THREAD(main);
SET_STACK_SIZE

}
…

}
module M1

read()

foo()

write()

main thread

Parallelizing a module

• Split it into two parallel parts

read()

foo1
thread

write()

main
thread

SC_MODULE(M1){

event e1,e2,data_received;
void foo1(){

wait(data_received);
for(int i=0;i<LEN/2;i++)

array_out[i]=x[i]+1;
wait(10/2,SC_SEC);
e1.notify(SC_ZERO_TIME);

} //sc_zero_time means that
the event is notified immediately

void main(){
In.read(x)
data_received.notify(

SC_ZERO_TIME);
wait(e1&e2);
Out.write(array_out)

}
}

void foo2(){
wait(data_received);
for(int i=LEN/2;i<LEN;i++)

array_out[i]=x[i]+1;
wait(10/2,SC_SEC);
e2.notify(SC_ZERO_TIME)

}

SC_CTOR(Stimulus)
{

SC_THREAD(main);
SET_STACK_SIZE
SC_THREAD(foo1);
SET_STACK_SIZE
SC_THREAD(foo2);
SET_STACK_SIZE

}

module M1

foo2
thread

event: data_received

event: e1

event: e2

use events for
synchronization
among threads

Parallelizing a module

• in Assignment 8, we parallelize BlurX and BlurY

• each with 4 parallel slices

• Hints:
1. use events for synchronization

2. make sure the Blur algorithms still work correctly

3. remember to change the timing for each parallel slices

4. don’t forget SC_ZERO_TIME in the notify() function

Submission

• Canny.cpp: source code

• Canny.txt: troubles and result output

