
EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 1

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 1

Lecture 8.2: Overview

• Data Structures
– Structures

• Declaration and definition

• Instantiation and initialization

• Member access

– Unions
• Declaration and definition

• Member access

– Enumerators
• Declaration and definition

– Type definitions

– Examples
• Student records: Students.c

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 2

Data Structures

• Structures (aka. records): struct
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of members
• Names and types of members are fixed at structure definition

– Member access by name
• Member-access operator: structure_name.member_name

• Example:

struct S { int i; float f;} s1, s2;

s1.i = 42; /* access to members */
s1.f = 3.1415;
s2 = s1; /* assignment */
s1.i = s1.i + 2*s2.i;

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 3

Data Structures

• Structure Declaration
– Declaration of a user-defined data type

• Structure Definition
– Definition of structure members and their type

• Structure Instantiation and Initialization
– Definition of a variable of structure type
– Initializer list defines initial values of members

• Example:
struct Student; /* declaration */

struct Student /* definition */
{ int ID; /* members */

char Name[40];
char Grade;

};

struct Student Jane = /* instantiation */
{1001, “Jane Doe”, ‘A’}; /* initialization */

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 4

Data Structures

• Structure Access
– Members are accessed by their name
– Member-access operator .

• Example:
struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

void PrintStudent(struct Student s)
{

printf(“ID: %d\n”, s.ID);
printf(“Name: %s\n”, s.Name);
printf(“Grade: %c\n”, s.Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 5

Data Structures

• Unions: union
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of mutually exclusive members
• Names and types of members are fixed at union definition

– Member access by name
• Member-access operator: union_name.member_name

– Only one member may be used at a time!
• All members share the same location in memory!

• Example:

union U { int i; float f;} u1, u2;

u1.i = 42; /* access to members */
u2.f = 3.1415;
u1.f = u2.f; /* destroys u1.i! */

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 6

Data Structures

• Union Declaration
– Declaration of a user-defined data type

• Union Definition
– Definition of union members and their type

• Union Instantiation and Initialization
– Definition of a variable of union type
– Single initializer defines value of first member

• Example:
union HeightOfTriangle; /* declaration */

union HeightOfTriangle /* definition */
{ int Height; /* members */

int LengthOfSideA;
float AngleBeta;

};

union HeightOfTriangle H /* instantiation */
= { 42 }; /* initialization */

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 7

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
union HeightOfTriangle
{ int Height;

int SideA;
float Beta;

};

union HeightOfTriangle t1, t2, t3
= { 42 };

0

t2
Height/
SideA/
Beta

0

t1
Height/
SideA/
Beta

42

t3
Height/
SideA/
Beta

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 8

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
union HeightOfTriangle
{ int Height;

int SideA;
float Beta;

};

union HeightOfTriangle t1, t2, t3
= { 42 };

void SetHeight(void)
{

t1.Height = 10;
t2.SideA = t1.Height / 2;
t3.Beta = 90.0;

}

5

t2
Height/
SideA/
Beta

10

t1
Height/
SideA/
Beta

90.0

t3
Height/
SideA/
Beta

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 9

Data Structures

• Enumerators: enum
– User-defined data type

• Members are an enumeration of integral constants

– Fixed set of members
• Names and values of members are fixed at enumerator definition

– Members are constants
• Member values cannot be changed after definition

• Example:
enum E { red, yellow, green };
enum E LightNS, LightEW;

LightEW = green; /* assignment */
if (LightNS == green) /* comparison */

{ LightEW = red; }

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 10

Data Structures

• Enumerator Declaration
– Declaration of a user-defined data type

• Enumerator Definition
– Definition of enumerator members and their value

• Enumerator Instantiation and Initialization
– Definition of a variable of enumerator type
– Initializer should be one member of the enumerator

• Example:
enum Weekday; /* declaration */

enum Weekday /* definition */
{ Monday, Tuesday, /* members */

Wednesday, Thursday,
Friday, Saturday, Sunday

};

enum Weekday Today /* instantiation */
= Thursday; /* initialization */

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 11

Data Structures

• Enumerator Values
– Enumerators are represented

as integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

–

• Example:

enum Weekday
{ Monday,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Weekday Today
= Thursday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Thursday

Today

Day: 3

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 12

Data Structures

• Enumerator Values
– Enumerators are represented

as integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 1,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Weekday Today
= Thursday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Thursday

Today

Day: 4

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 13

Data Structures

• Enumerator Values
– Enumerators are represented

as integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 2,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday = 1

};

enum Weekday Today
= Thursday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Thursday

Today

Day: 5

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 14

Data Structures

• Type definitions: typedef
– A typedef can be defined as an alias type for another type

– A typedef definition follows the same rules as a variable
definition

– Type definitions are usually used to abbreviate access to
user-defined types

• Examples:
typedef signed long int MyInteger;
MyInteger i1 = 42;

typedef enum Weekday Day;
Day Today = Thursday;

typedef struct Student Scholar;
Scholar Jane, John;

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 8

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 15

Data Structures

• Program example: Students.c (part 1/6)
/* Students.c: simple array of student records */
/* author: Rainer Doemer */
/* modifications: */
/* 08/28/13 RD initial version */

#include <stdio.h>
#include <stdlib.h>

/* constants */

#define SLEN 40
#define MAX 100

/* data structures */

struct Student
{ int ID;

char Name[SLEN];
int Score;

};
typedef struct Student STUDENT;

STUDENT Record[MAX];
int N = 0;
...

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 16

Data Structures

• Program example: Students.c (part 2/6)
...
/* function declarations */

STUDENT EnterStudent(void);
void PrintStudent(STUDENT s);
char LetterGrade(int Score);
void InsertStudent(STUDENT s);

/* function definitions */

STUDENT EnterStudent(void)
{

STUDENT s;

printf("Enter student ID: ");
scanf("%d", &s.ID);
printf("Enter student name: ");
scanf("%39s", &s.Name[0]);
printf("Enter student score: ");
scanf("%d", &s.Score);
return s;

}

...

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 9

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 17

Data Structures

• Program example: Students.c (part 3/6)
...
void PrintStudent(STUDENT s)
{

printf("ID %3d: %-39s, Score %3d%% = %c\n",
s.ID, s.Name, s.Score, LetterGrade(s.Score));

}

char LetterGrade(int Score)
{ switch(Score/10)

{ case 10:
case 9: return 'A';
case 8: return 'B';
case 7: return 'C';
case 6: return 'D';
case 5: case 4: case 3: case 2: case 1:
case 0: return 'F';
default: break;

} /* hctiws */
return '-';

}
...

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 18

Data Structures

• Program example: Students.c (part 4/6)
...

void InsertStudent(STUDENT s)
{

int i, j;

for(i=0; i<N; i++)
{

if (s.ID < Record[i].ID)
{ break;
}

}
for(j=N; j>i; j--)
{

Record[j] = Record[j-1];
}
Record[i] = s;
N++;

}

...

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 10

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 19

Data Structures

• Program example: Students.c (part 5/6)
...

int main(void)
{

int Choice, i;

while(1)
{ printf("Student records: %d\n", N);

printf("1. Enter new student\n");
printf("2. Print student table\n");
printf("3. Quit\n");
printf("Choice: ");
scanf("%d", &Choice);
switch(Choice)
{ case 1:

{ if (N < MAX)
{ InsertStudent(EnterStudent());
}
break;

}
...

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 20

Data Structures

• Program example: Students.c (part 6/6)
...

case 2:
{ for(i=0; i<N; i++)

{ PrintStudent(Record[i]);
}
break;

}
case 3:
{ exit(0);
}

default:
{ break;
}

} /* hctiws */
} /* elihw */
return 0;

} /* end of main */

/* EOF */

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 11

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 21

Data Structures

• Example session: Students.c (part 1/3)
% vi Students.c
% gcc Students.c -o Students -Wall -ansi
% Students
Student records: 0
1. Enter new student
2. Print student table
3. Quit
Choice: 1
Enter student ID: 1879
Enter student name: Albert_Einstein
Enter student score: 100
Student records: 1
1. Enter new student
2. Print student table
3. Quit
Choice: 2
ID 1879: Albert_Einstein , Score 100% = A
...

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 22

Data Structures

• Example session: Students.c (part 2/3)
...
Student records: 1
1. Enter new student
2. Print student table
3. Quit
Choice: 1
Enter student ID: 1642
Enter student name: Isaac_Newton
Enter student score: 100
Student records: 2
1. Enter new student
2. Print student table
3. Quit
Choice: 2
ID 1642: Isaac_Newton , Score 100% = A
ID 1879: Albert_Einstein , Score 100% = A
...

EECS10: Computational Methods in ECE Lecture 8

(c) 2013 R. Doemer 12

EECS10: Computational Methods in ECE, Lecture 8 (c) 2013 R. Doemer 23

Data Structures

• Example session: Students.c (part 3/3)
[...]
Choice: 1
Enter student ID: 1623
Enter student name: Blaise_Pascal
Enter student score: 100
Student records: 3
1. Enter new student
2. Print student table
3. Quit
Choice: 2
ID 1623: Blaise_Pascal , Score 100% = A
ID 1642: Isaac_Newton , Score 100% = A
ID 1879: Albert_Einstein , Score 100% = A
Student records: 3
1. Enter new student
2. Print student table
3. Quit
Choice: 3
%

