
1

EECS 222: Embedded System Modeling
Winter 2019

Assignment 7

Posted: February 19, 2019
Due: February 27, 2019 at 6pm

Topic: Performance estimation of the Canny Edge Decoder

1. Setup:

This assignment continues the modeling of our application example, the Canny
Edge Detector. We will now use our model for initial performance estimation. In a
first step, we will profile the application for relative timing so that we can identify
the components with the highest computational complexity. In a second step, we
then measure the absolute timing of the main Canny functions.

Again, we will use the same setup as for the previous assignments. Start by
creating a new working directory, so that you can properly submit your
deliverables in the end.

mkdir hw7
 cd hw7

For functional validation, create again a symbolic link to the video stream files, as
follows:

ln –s ~eecs222/public/video video

As in the previous assignments, you have again the choice of using either SpecC
or SystemC for your performance estimation. Both SLDLs are equally suitable for
this assignment, but the profiling step uses different tools.

As starting point, you can use your own SLDL model which you have created in
the previous Assignment 6. Alternatively, you may start from the provided
solution for Assignment 6 which you can copy as follows:

 cp ~eecs222/public/cannyA6_specc_ref.sc Canny.sc
 cp ~eecs222/public/cannyA6_systemc_ref.cpp Canny.cpp

You may also want to reuse the Makefile from the previous assignments:

 cp ~eecs222/public/MakefileA5SpecC ./
 cp ~eecs222/public/MakefileA5SystemC ./

2

Again, depending on whether you choose SpecC or SystemC for your modeling,
rename the corresponding file into the actual Makefile to be used by make.

2. Performance Estimation of the Canny Edge Detector

Step 1: Profile the application components

For an initial performance estimation of our Canny Edge Detector model, it is
critical to identify the computational complexity of its main components. In other
words, we want to find out which components can become a bottleneck in the
implementation. To this end, we will profile our design model in this step.

For the SpecC model, we will use the profiler integrated into the System-on-Chip
Environment (SCE). Here, we will use the latest version of SCE, namely
/opt/sce/bin/sce. When the GUI has started, create a new project
(Project->New), import your source code (File->Import), add the model to
your project (Project->AddDesign), and rename it to CannyA7. Next, compile
(Validation->Compile) and simulate (Validation->Simulate) your
model in SCE. By default, the model is automatically instrumented, so that you
can run the profiler next (Validation->Profile). The GUI will then present
you with the profiling results (i.e. computation counts) in numerical or graphical
form (select desired behaviors, right-click, Graphs->Computation).

For the SystemC model we will use the profiling tools provided by the GNU
community, namely gprof. In order to use the GNU profiler, you need to
instrument your model (prepare it for profiling) by supplying the -pg option to the
GNU compiler g++. After compilation, run your executable once, just as you
would for regular simulation. This will produce a file gmon.out with profiling
statistics that you can then analyze with gprof Canny. This in turn will generate
a detailed profiling report (in textual form) where you can inspect the function call
tree and other results. For the computational complexity we are interested in, see
the “flat profile” in the report.

In this step, we are only interested in the relative computational load of the
components in the DUT (and we want to ignore all computation performed by the
components in the test bench). Thus, assuming the total DUT load is 100%, we
want to find out how much load each of the DUT components contribute.

For this first step, calculate the relative load of the DUT components as a
percentage value and fill the results in the following complexity comparison table:

Gaussian_Smooth ...%
|------ Receive_Image ...%
|------ Gaussian_Kernel ...%
|------ BlurX ...%
\------ BlurY ...%
Derivative_X_Y ...%

3

Magnitude_X_Y ...%
Non_Max_Supp ...%
Apply_Hysteresis ...%
 100%

Submit the filled table in your text file Canny.txt with a brief explanation of how
you obtained these results and which tool you used.

Step 2: Measure the application performance on a reference platform

In order to obtain absolute timing information, we measure the application
performance on a reference platform. In the absence of an embedded
prototyping board (which we would have available in a perfect world), we
measure the delays of the major application functions on the simulator host
platform in this step.

For this purpose, instrument your model source code with timing measurement
instructions, as follows:

1) Include the time.h header file in your model:

#include <time.h>

2) Create timer variables, as follows:

clock_t Tstart, Tstop;
double T1 = 0.0;

3) To start a timer, place the following statement right before the function call to
be measured:

Tstart = clock();

4) To stop the timer, place the following statement right after the function call to
be measured:

Tstop = clock();

5) Finally, to calculate the CPU time of the measured function in seconds, you
can use a calculation like this:

T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

6) Right before the end of simulation, print the measured delays to the screen.

For simplicity, you may use global variables for this timing instrumentation.

4

For this second step, note both the absolute time measured (in seconds) and the
relative delays of the components (as a percentage value) in a table similar to the
following:

Gaussian_Smooth ...sec ...%
|------ Receive_Image ...sec ...%
|------ Gaussian_Kernel ...sec ...%
|------ BlurX ...sec ...%
\------ BlurY ...sec ...%
Derivative_X_Y ...sec ...%
Magnitude_X_Y ...sec ...%
Non_Max_Supp ...sec ...%
Apply_Hysteresis ...sec ...%
 ...sec 100%

Submit this second filled table also in your text file Canny.txt.

3. Submission:

For this assignment, submit the following deliverables:

Canny.sc or Canny.cpp
Canny.txt

As before, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. In addition, include the
profiling comparison results and a brief explanation.

To submit these files, change into the parent directory of your hw7 directory and
run the ~eecs222/bin/turnin.sh script. As before, note that the submission
script will ask for both the SystemC and SpecC models, but you need to submit
only the one that you have chosen for your modeling.

Again, be sure to submit on time. Late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~eecs222/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Dömer (EH3217, x4-9007, doemer@uci.edu)

