EECS222: Embedded System Modeling

EECS 222:
Embedded System Modeling
Lecture 11

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 11: Overview

» Discrete Event Simulation Semantics
— Discrete Event Simulation
— Parallel Discrete Event Simulation
— Out-of-Order Parallel Discrete Event Simulation

* Formal Execution Semantics
— Time-Interval Formalism

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Discrete Event Simulation Semantics

» Discrete Event Simulation Algorithm for SpecC
— available in LRM (appendix), good for documentation
= abstract definition (defines a set of valid implementations)
= not general (possibly incomplete)

» Definitions:
— At any time, each thread t is in one of the following sets:
* READY: set of threads ready to execute (initially root thread)
» WAIT: set of threads suspended by wait (initially &)
* WAITFOR: set of threads suspended by waitfor (initially &)
— Notified events are stored in a set N
e notify el adds eventelto N
e wait el will wakeup when elisin N
» Consumption of event e means event e is taken out of N
» Expiration of notified events means N is set to &

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 3

Discrete Event Simulation Semantics

» Discrete Event Simulation Algorithm for SpecC

Select thread teREADY, execute t e m-a -
<
Q
Add notified events to N E_:
Move teREADY to WAIT g o
Move teREADY to WAITFOR S %
o L =
o |
NO o |[© |3
<R %) < S
s 2 12
| Move all te WAIT waiting +for events ecN to READY | S
[Set N=0 | @
¢ NO
lﬂﬁ _
YES
[Update simulation time, move earliest te WAITFOR to READY|
(c) 2019 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 11

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Discrete Event Simulation (DES)

* Traditional DES th1 thz th3 th4 TA
— Concurrent threads of execution 0:0
— Managed by a central scheduler
— Driven by events and time advances ".' 10:0

+ Delta cycle J: i -110:1
» Time cycle s -2 1102
» Partial temporal order with barriers i
» Reference Simulators
— Both SystemC and SpecC i -1 20:0
implement cooperative multi-threading so-i---d--120:1
— Example: Execution of four threads | 20:2
» A single thread is active at any time! % %
» Cannot exploit multiple parallel cores
Ty 30:0
EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 5
Discrete Event Simulation (DES)

» Specific Example: th th1 thy thy th, — TA
Accellera SystemC B 0:0
Proof-of-Concept Library |

> Root Thread F ‘J"] 182

— Elaboration phase b ’
— Scheduling tasks g 103
» Event notifications
* Channel updates §
* Delta cycle updates --t--=t-1 20:4
« Simulation time updates 2055
_ SC_METHOD calls [206
* (not shown) % §
30:7

EECS222: Embedded System Modeling, Lecture 11

VoV

(c) 2019 R. Doemer

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

> Parallel Simulation!?

» SLDL Execution Semantics

— SystemC prescribes
Cooperative Multi-Threading

» SystemC LRM defines:
“process instances execute without
interruption”

» Preemptive scheduling forbidden!
— SpecC specifies
Preemptive Multi-Threading

» SpecC LRM defines:
"preemptive execution”,
"No atomicity is guaranteed”

» Preemptive scheduling assumed!

» Need critical regions with
mutually exclusive access: Channels!

EECS222: Embedded System Modeling, Lecture 11

i

Discrete Event Simulation (DES)

th, th, th, th,
1
- §E
J
>3

(c) 2019 R. Doemer

T:A
0:0

10:0
10:1

10:2

20:0
20:1
20:2

30:0

1) Time-interval formalism

» Discussed in the following slides!

» Not discused in this course

EECS222: Embedded System Modeling, Lecture 11

2) Abstract State Machines (ASM)
+ Complete execution semantics of SpecC
« wait, notify, notifyone, par, pipe, try-trap-interrupt
» Operational semantics only (no data types!)
» Abstract model closely matches SystemC
» Abstract model closely matches VHDL, Verilog

Formal Execution Semantics

« Examples of Formally Defined Semantics

(c) 2019 R. Doemer

» Formally defines timed execution semantics of SpecC
» Covers sequentiality, concurrency, synchronization
+ Allows reasoning over execution order, dependencies

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Formal Execution Semantics

* Time-interval formalism

— Definition of execution semantics of SpecC 2.0
» sequential execution
» concurrent execution (semantics of par)
 synchronization (semantics of notify, wait)

— Sequential execution

" Tstart(B1) <= Tstart(a) < Tend(a) <=
behavior Bl
{ void main(void) Tstart(b) < Tend(b) <=
{ a; Tstart(c) < Tend(c) <= Tend(B1)
b; —
C; o~ B1
3
r e
time
EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 9

Formal Execution Semantics

* Time-interval formalism

— Sequential execution
* waitfor rule:
— only waitfor increases simulation time
— other statements execute in zero simulation time

behavior B 0 <= Tstart(a) <Tend(a) < 1
{ void main(void) 0 <= Tstart(w) < Tend(w) = 10
{ a; 10 <= Tstart(b) <Tend(b) < 11
waitfor 10;
b;
- dafrdwp o>

t=0 t=1 t=10 t=1q fime

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 10

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Formal Execution Semantics

* Time-interval formalism
— Concurrent execution

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!

behavior B

Tstart(B) <= Tstart(a) < Tend(a) <=

(
{ void main(void) Tstart(b) < Tend(b) <=
{ par{ bl; b2;} Tstart(c) < Tend(c) <= Tend(B)
}_} Tstart(B) <= Tstart(d) < Tend(d) <=

Tstart(e) < Tend(e) <=

{ vo

behavior Bl

Tstart(f) < Tend(f) <= Tend(B)

1o el (LD Possible Schedule

{a; b;c;}

} |

behavior B2
{ void main(void)
{d; e T}

behavior Bl

{ void main(void)

{ a; wait e; b; }
}:

behavior B2 <—| : P
{ void main(void) :

{ c; notify e; d; }
};

ek

Tstart(n) < Tend(n) <=

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemertime 1
Formal Execution Semantics
» Time-interval formalism
— Synchronization
behavior B Tstart(B) <= Tstart(a) < Tend(a) <=
{ void main(void) Tstart(w) < Tend(w) <=
§ par{ bl; b2:} Tstart(b) < Tend(b) <= Tend(B)
}: Tstart(B) <= Tstart(c) < Tend(c) <=

Tstart(d) < Tend(d) <= Tend(B)

Tend(w) >= Tend(n)

<—|Z|—/><—|II—>
anllng

EECS222: Embedded System Modeling, Lecture 11

time

(c) 2019 R. Doemer 12

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Formal Execution Semantics

Time-interval formalism

— Atomicity
+ Since there is generally no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary
* SpecC 2.0: Channels behave as Monitors!
— A mutex is implicitly contained in each channel instance
— Each channel method implicitly
» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes

— wait and waitfor statements implicitly (and atomically!)
» release an acquired mutex in a channel, and
» re-acquire the mutex before execution resumes

» This easily enables safe communication
without heavy restrictions to the implementation!

(c) 2019 R. Doemer 13

EECS222: Embedded System Modeling, Lecture 11

Discrete Event Simulation (DES)

» Parallel Simulation!?
+ Safe Communication in Parallel Execution Context
» Requires protection of inter-thread communication!

— SpecC
» Preemptive multi-threading mandates channels as “monitors”

— SystemC
» Cooperative multi-threading assumes execution “without interruption”
» Protection: Insert a mutex lock into channel instances
 Lock the channel Thread 1 Thread 2
on thread entry
+ Unlock the channel Channel
on thread exit 5
» Atomic execution N § g

of channel methods

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 14

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Parallel Discrete Event Simulation (PDES)

* Review: Sequential DES Algorithm

— Active Threads
are managed
in READY queue

— Simulation progress ‘
+ Delta cycle =3

» Time cycle
. VthEWAIT, if th's i ified;
> SChedU|er pICkS Move(t:r,fNAlT, R;D;;‘g::rsnzﬁfleld events;
a single thread

and executes it G-
Update the simulation time;
move the earliest thEWAITFOR to READY;

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 15

Parallel Discrete Event Simulation (PDES)

Parallel DES Algorithm

Active threads
are managed
in READY queue
— Simulation progress|
+ Delta cycle No -
« Time CyCle es VthEWAIT, if th's event is notified;
Move(th, WAIT, READY), Clear notified events;
» Scheduler

picks N threads :

and executes
them in parallel
» N = number

of available
CPU cores

EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 16

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Parallel Discrete Event Simulation (PDES)
« Parallel DES thy thy thy th, T4
— Threads execute in parallel iff '
« in the same delta cycle, and
* in the same time cycle <. -$-110:0
> Significant speed up! -=-110:1
— Cycle boundaries are - p7110:2
absolute barriers: Synchronous PDES
* Aggressive Parallel DES 200
— Conservative Approaches edeoaes 20;1
+ Careful static analysis prevents conflicts - cohs--1s-1 2002
— Optimistic Approaches
» Conflicts are detected and addressed
(roll back) > P .
v 30:0
EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 17

Parallel Discrete Event Simulation (PDES)
« Out-of-Order PDES thy thy thy th, TA
— Threads execute in parallel iff F 0:0
« in the same delta cycle, and
* In the same time cycle, E -<£-110:0
* OR if there are no conflicts! -Fs-<--1 101
> Breaks synchronization barrier b 10:2
» Threads run as soon as possible,
even ahead of time
» Results in even higher speedup! _
- [DATE12], [[EEE TCAD'14]] ':_J:: gg;?
— Needs compiler support for it logo
data and event conflict analysis!
» Preserves the accuracy §
of cause and effect relationship]
» Accurate results and simulation time v 30:0
EECS222: Embedded System Modeling, Lecture 11 (c) 2019 R. Doemer 18

(c) 2019 R. Doemer

Lecture 11

EECS222: Embedded System Modeling

Recoding Infrastructure for SystemC (RISC)

Advanced Parallel SystemC Simulation

— Aggressive PDES on many-core host platforms

— Maximum compliance with IEEE SystemC semantics
Introduction of a Dedicated SystemC Compiler

— Advanced conflict analysis for safe parallel execution

— Automatic model instrumentation and code generation
Parallel SystemC Simulator

— Out-of-order parallel scheduler, multi-thread safe primitives

— Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)
* Open Source
— Freely available for evaluation and collaboration
— Thanks to Intel Corporation!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 19

Recoding Infrastructure for SystemC (RISC)

* Out-of-Order PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis
» Static conflict analysis based on Segment Graphs
2. Parallel simulator with out-of-order scheduling
» Fast decision making at run-time, optimized mapping
* Fundamental Data Structure: Segment Graph
— Key to semantics-compliant out-of-order execution [DATE’12]
— Key to prediction of future thread state [DATE’13]
» “Optimized Out-of-Order Parallel DE Simulation Using Predictions”
— Key to May-Happen-in-Parallel Analysis [DATE’14]

* “May-Happen-in-Parallel Analysis based on Segment Graphs
for Safe ESL Models" (Best Paper Award)

— Combined: “O00 PDES for TLM" [IEEE TCAD’14]
* Comprehensive summary with HybridThreads extension

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 20

(c) 2019 R. Doemer

Lecture 11

10

EECS222: Embedded System Modeling

* RISC Software Stack

— C/C++ foundation
— ROSE compiler (from LLNL)

[ROSE-based tools]

C/C++/Fortran
Source Code

EDG Front-end/
‘Open Fortran Parser

Unparser

System Dependence

1 Control Flow

- Data Dependence s .
ROSE compiler infrastructure ource:

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

» Recoding Infrastructure for SystemC

Transformed
Source/Binary

RISC: Dedicated SystemC Compiler

RISC

ROSE IR
C/C++ Foundation

* ROSE Internal Representation
» Explicit support for

(m » Source code analysis
100
2009 Winner ¢ Source-to-source

transformations

Lawrence Livermore National Laboratory (LLNL)

(c) 2018 R. Doemer, CECS 21

* RISC Software Stack

» Recoding Infrastructure for SystemC
— SystemC Internal
Representation

Class hierarchy to represent
SystemC objects

RISC: Dedicated SystemC Compiler

RISC

SystemC IR

ROSE IR |

C/C++ Foundation

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 22

PrimitiveChannel

(c) 2019 R. Doemer

Lecture 11

11

EECS222: Embedded System Modeling

RISC: Dedicated SystemC Compiler

* RISC Software Stack RISC
» Recoding Infrastructure for SystemC Segment Graph
SystemC IR
1) Segment Graph
2) Parallel access conflict analysis ROEE R |
y C/C++ Foundation

SystemC Model T Parallel
SystemC Compiler C++ Model

Step 1: Build a Segment Graph

Segment Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 23

systemc.h RISC

j N\ Model ilati
v Segment Graph Parallel Access ... |— ode Co‘mpllatllon,
A : . N [PETEESY Simulation

Model.cpp Construction Conflict Analysis

RISC: Dedicated SystemC Compiler

+ Segment Graph
— Segment Graph is a directed graph

* Nodes: Segments

» Code statements executed
between two scheduling steps
— Expression statements + / *
— Control flow statements (i f, while, ...) (Seg4] [(Sess)

Segment Graph

— Function calls

» Edges: Segment boundaries

» Primitives that trigger scheduler entry
— wait(event)
— wait(time)

» Segment Graph is built automatically by the compiler [TCAD’14]
* From the model source code
» Via Abstract Syntax Tree and Control Flow Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 24

(c) 2019 R. Doemer

Lecture 11

12

EECS222: Embedded System Modeling

RISC: Dedicated SystemC Compiler

» RISC Software Stack RISC

» Recoding Infrastructure for SystemC S Stegmgr:lt:{Graph
1) Segment Graph construction ysiem

: . ROSE IR |
2) Paralle.l access confllct analysis C/C++ Foundation
3) Model instrumentation

SystemC Model Parallel

SystemC Compiler C++ Model
systemc.h RISC

Segment Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 25

Model ilati
v Segment Graph Parallel Access ode Co‘mpllatllon,
; h ; _par.cpp Simulation
Model.cpp Construction Conflict Analysis 7
Instrumentation!
Seg 2 Seqg 3
R: a,b R: ab
W: X W: Xy
RW: z RW:

RISC: Compiler and Simulator

» Compiler and Simulator work hand in hand

— Compiler performs conservative static analysis

— Analysis results are passed to the simulator

— Simulator can make safe scheduling decisions quickly
» Automatic Model Instrumentation

» Static analysis results are inserted into the source code

Input Model 7 Parallel 7
— SystemR(:':I SC(;)mpller C++ Model systeme RISC Simulator
systemc. h
L G Out-of-Order
- I Source Code ; —> Parallel
: Compiler . X
Model.cpp Instrumentation Simulation
Parallel
SystemC
Library
Model Instrumentation:
Segment and Instance IDs
Segment Conflict Tables
Time Advance Tables
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 26

(c) 2019 R. Doemer

Lecture 11

13

EECS222: Embedded System Modeling

RISC: Parallel SystemC Simulator

» Simulator kernel with Out-of-Order Parallel Scheduler
— Conceptual OoO PDES execution

Ve Issue
.+ Evaluate Threads

\ i /Issue threads...
! 3 + truly in parallel and out-of-order
l » whenever they are ready
oy + and have no conflicts!
» Fast conflict table lookup
| » Optimized thread-to-core
T e mapping

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 27

f Advance Time

RISC: Experiments and Results

* DVD Player Example
— Parallel video and audio decoding with different frame rates

Multimedia
input Stimulus
stream

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;

1: SC_MODULE(VideoCodec) 3: sc_port<i_sender> p2;

2: { sc_port<i_receiver> p1; 4: ..

3: sc_port<i_sender> p2; 5: while(1) {

4: ... 6: p1->receive(&inFrm);

5: while(1){ 7: outFrm = decode(inFrm);
6: p1->receive(&inFrm); 8: wait(26120, SC_US);

7: outFrm = decode(inFrm); 9: p2->send(outFrm);

8: wait(33330, SC_US); 10: }

9: p2->send(outFrm); 11:%

10:

-
s
-

:
=

Video 2 Audio Channels
30 FPS 38.28 FPS
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 28

(c) 2019 R. Doemer

Lecture 11

14

EECS222: Embedded System Modeling

RISC: Experiments and Results

+ DVD Player Example

— Parallel video and audio decoding
with different frame rates

1. Real time schedule: fully parallel

3333 | 6667 100
Video | Frame1 | Frame2 | Frame 3

Left_ LF1 | LF2 | LF3 | (F4 |
Right | RF 1 RF 2 RF3 | RF4 |

0 26.12 52.25 78.38 Time [ms]

2. Reference simulator schedule (DES)

(Stimulus]

33,33 , , 66,67) 100
Video : Frame 1 : Frame 2 Frame 3
Left| LF1 LF 2 LF3 LF 4
Right RF 1 RF 2 RF 3
0 26.12 52.25 78.38 Time [ms] ...
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 29

RISC: Experiments and Results

* DVD Player Example

— Parallel video and audio decoding
with different frame rates

1. Real time schedule: fully parallel
3333 | 6667 , 100
Video | Frame1 | Frame2 | Frame3 |

Left| LF1 [LF2 [LF3 [LF4 |
Right | RE1 | RF2 | RF3 | RF4 |

0 26.12 52.25 78.38 Time [ms]

3. Synchronous parallel schedule (PDES)

(Stimulus]

33,33 66,67 , 100
Video | Frame 1 Frame 2 Frame 3
Left| LF1 LF 2 LF3 LF 4
Right | RF 1 RF 2 RF 3 RF 4
0 26.12 52.25 78.38 Time [ms]
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 30

(c) 2019 R. Doemer

Lecture 11

15

EECS222: Embedded System Modeling Lecture 11

RISC: Experiments and Results

« DVD Player Example (sumulus)

— Parallel video and audio decoding
with different frame rates

1. Real time schedule: fully parallel
3333 | 6667 , 100
Video | Frame1 | Frame?2 | Frame3

Left| LF1 LF2 LF3 | LF4 |
Right | RF 1 RF 2 RF3 [RF4 |

0 26.12 52.25 78.38 Time [ms]

4. Out-of-order parallel schedule (OoO PDES)
3333 , 6667 , 100
Video |_Frame 1 ! Frame 2 | Frame 3 !

Left| LF1 | LF2 [LF3 [LF4 |
Right | RE1 | RF2 | RF3 | RF4 |

0 2642 5225 78.38 Time [ms]

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 31

RISC: Experiments and Results

(Stimulus

* DVD Player Example
— Parallel video and audio decoding -

8 O

with different frame rates ..
.

aa

e Simulator Run Times
— 4-core Intel® Xeon® CPU at 3.4 GHz

)
i
e
]

— RISC v0.2.1, Posix-threads -
(e]e]6]
DES PDES PDES |
Run Time 6.98 s 4.67s 29 s v v v
10 sec o o o
CPU Load 97% 145% 238%
stream
Speedup 1x 1.49 x 2.37x
Run Time 68.21s 4591s 28.13s
100sec " on oad | 100% 149% 251%
stream
Speedup 1x 1.49 x 2.42 x
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 32

(c) 2019 R. Doemer 16

EECS222: Embedded System Modeling

RISC: Experiments and Results

+ Mandelbrot Renderer (Graphics Pipeline Application)
— Mandelbrot Set
* Mathematical set of points
in complex plane

— Two-dimensional fractal shape
» High computation load

— Recursivel/iterative function
* Embarrassingly parallel

— Parallelism at pixel level [fe r@_|
— SystemC Model

* TLM abstraction
» Horizontal image slices
» Highly configurable

» Parallelism parameter
from 1 to 256 slices

Stimulus Monitor

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 33

RISC: Experiments and Results

* Mandelbrot Renderer (Graphics Pipeline Application)
» Simulated Graphics Demonstration
(when network delays prevent actual graphical demo)

X Mandelbrot 1 (== X Mendelbrot 8

X Mandelbrot 8

X Mandelbrot 8
X Mandelbrot 8

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 34

(c) 2019 R. Doemer

Lecture 11

17

EECS222: Embedded System Modeling Lecture 11

RISC: Experiments and Results

* Mandelbrot Renderer (Graphics Pipeline Application)
— Simulator run times on 16-core Intel® Xeon® multi-core host
— 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded
— RISC V0.2.1, Posix-threads

DES PDES 000 PDES
R_un CPU R_un CPU Speedup Run CPU
Time Load Time Load Time Load
1 162.13s| 99% |162.06s| 100% | 1.00x [161.90s| 100% | 1.00 x
2 162.19s| 99% |96.50s| 168% | 1.68x | 96.48s | 168% | 1.68 x
4 162.56s| 99% |54.00s| 305% | 3.01x |53.85s| 304% | 3.02x
8 163.10s| 99% |29.89s| 592% | 5.46x |30.05s| 589% | 5.43 x
16 164.01s| 99% |19.03s| 1050% | 8.62x |20.08s | 997% | 8.17 x
32 165.89s| 99% | 11.78 s | 2082% | 14.08 x | 11.99 s | 2023% | 13.84 x
64 170.32s| 99% 9.79s | 2607% | 17.40x | 9.85s | 2608% | 17.29 x
128 174.55s| 99% 9.34s | 2793% | 1869 x | 9.39s | 2787% | 18.59 x
256 185.47s| 100% | 8.91s | 2958% | 20.82x | 8.90s | 2964% | 20.84 x

Parallel

Slices Speedup

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 35

RISC: Experiments and Results

* Many-Core Target Platform: Intel® Xeon Phi™

— Many Integrated Core (MIC) architecture 2.
+ 1 Coprocessor 5110P CPU at 1.052 GHz ’A
» 60 physical cores with 4-way hyper-threading '@;
— Appears as regular Linux host with 240 cores A
» Up to 8 lanes available for vector processing
» RISC extended for exploiting 2 types of parallelism
— Out-of-Order PDES: thread-level parallelism
— Intel® compiler SIMD: data-level parallelism
» RISC SIMD Advisor identifies functions with data-level
parallelism suitable for SIMD vectorization
» DAC ’17 paper:
"Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation”

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 36

(c) 2019 R. Doemer 18

EECS222: Embedded System Modeling

RISC: Experiments and Results

* Many-Core Target Platform: Intel® Xeon Phi™

— Exploiting thread- and data-level parallelism [DAC’17]
— Mandelbrot renderer (graphics pipeline application)

» Experimental Results:

[PAR |_MT | SIMD [MT+SIMD|
1 100 692 6.94
2 168 692 11.77
4 304 692 2119
8 584 692 40.10
16 1137 692 7252
32 2132 691 13721
64 41.07 690 208.41
128 4629 6.89 212.96
256 49.90 6.87 194.19

250

200

150

Speedup

/"\.

1 2 4 8 16 32 64 128256 Threads

—te—MT
—+—SIMD
~#=MT+SIMD

» Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS

37

RISC Open Source Software

RISC Compiler and Simulator are freely available

— http://www.cecs.uci.edu/~doemer/risc.htmi#RISC042

Installation notes and script:

Open source tar ball:

Docker script and container:

Doxygen documentation:
Tool manual pages:
BSD license terms:

— Companion Technical Report

» CECS Technical Report 17-05:

bash# docker pull ucirvinelecs/risc
bash# docker run -it ucirvinelecs/risc
[dockeruser]# cd demodir

» Docker container: [dockeruser]# make test

INSTALL, MakeFile

risc_v0.4.2_tar.gz

Dockerfile

RISC API, OOPSC API
risc, simd, visual, ...

LICENSE

CECS_TR_17_05.pdf

» https://hub.docker.com/r/ucirvinelecs/risc/

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS

38

(c) 2019 R. Doemer

Lecture 11

19

