EECS 222: Embedded System Modeling Lecture 13

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

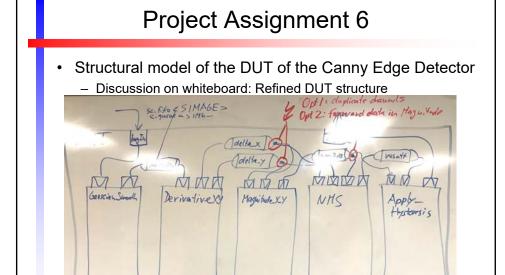
Lecture 13: Overview

- · Project Assignment 6
 - Refined structure of Gaussian Smooth
- System-on-Chip Environment (SCE)
 - Specification Modeling Guidelines
 - Design Example: GSM Vocoder
 - Interactive Demonstration

EECS222: Embedded System Modeling, Lecture 13

(c) 2019 R. Doemer

2


Project Assignment 6

- Task: Hierarchical DUT of the Canny Edge Detector
 - Refine the structural hierarchy of the DUT block
 - Refine the structural hierarchy of the Gaussian Smooth block
- Steps
 - 1. Refine the DUT structure
 - · Gaussian Smooth, Derivative, ..., Apply Hysteresis
 - 2. Refine the Gaussian Smooth structure
 - · Receive Image, Gaussian Kernel, BlurX, BlurY
 - 3. Visualize the structural hierarchy of the model
- Deliverables
 - Canny.sc or Canny.cpp (choose one!)
 - Canny.txt
- Due: February 20, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 13

(c) 2019 R. Doemer

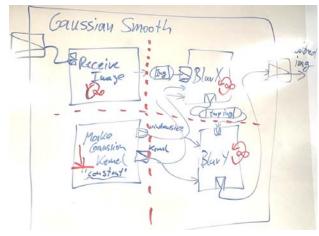
3

EECS222: Embedded System Modeling, Lecture 13

(c) 2019 R. Doemer

Project Assignment 6

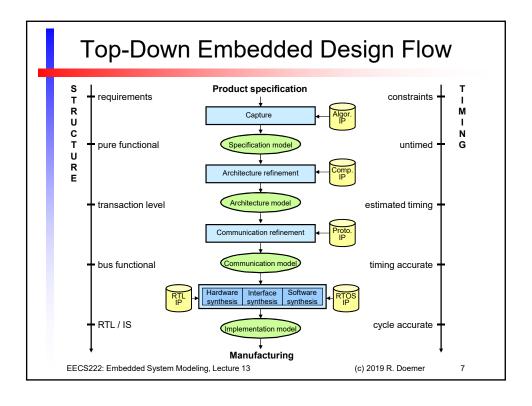
- Step 2: Refined hierarchy of the Gaussian Smooth
 - Expected instance tree

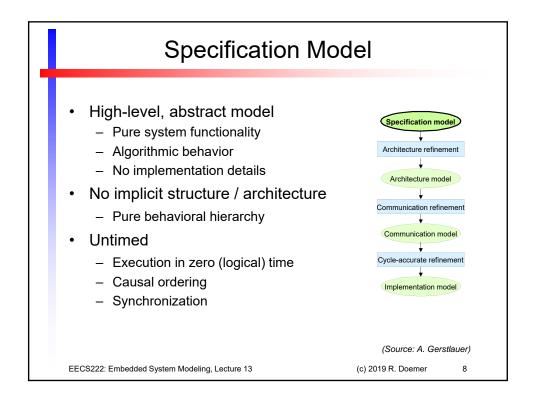

EECS222: Embedded System Modeling, Lecture 13

(c) 2019 R. Doemer

5

Project Assignment 6


- Structural model of the DUT of the Canny Edge Detector
 - Discussion on whiteboard: Refined Gaussian Smooth structure



EECS222: Embedded System Modeling, Lecture 13

(c) 2019 R. Doemer

6

Specification Modeling Guidelines

- Example: Guidelines for SoC Environment (SCE)
 - Clean behavioral hierarchy
 - hierarchical behaviors: no code other than par, pipe, seq, fsm, and try-trap statements
 - leaf behaviors:
 Pure ANSI-C code (no SpecC constructs)
 - Clean communication
 - · point-to-point communication via standard channels
 - ports of plain type or interface type, no pointers!
 - · port maps to local variables or ports only
- · Detailed rules for SoC Environment
 - CECS Technical Report:
 - "SCE Specification Model Reference Manual"
 - by A. Gerstlauer, R. Dömer, et al.
 - /opt/sce-20100908/doc/SpecRM.pdf

EECS222: Embedded System Modeling, Lecture 13

(c) 2019 R. Doemer

9

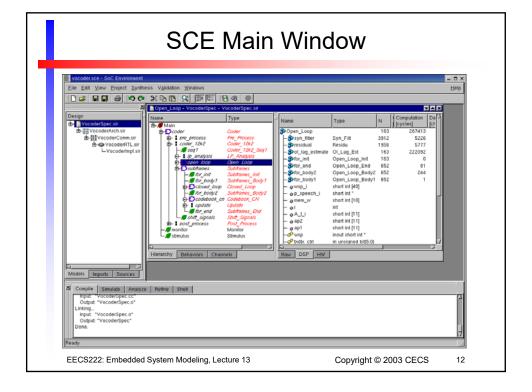
Specification Modeling Guidelines

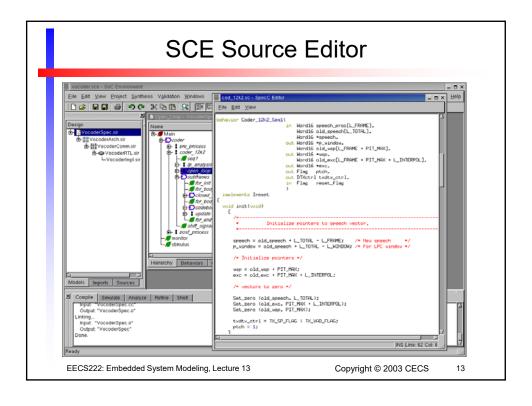
- Converting C reference code to SpecC
 - Major functions become behaviors
 - Function call tree becomes behavioral hierarchy
 - · Function call becomes behavior instance call
 - · Sequential statements become leaf behaviors
 - · Control flow becomes FSM
 - Conditional statements: if, if-else, switch
 - Loops: while, for, do-while
 - Explicitly specify potential parallelism!
 - Explicitly specify communication!
 - · Use standard channels, avoid shared variables
 - · No global variables
 - · Only local variables in behaviors and functions/methods
 - Data types
 - Avoid dynamic memory allocation
 - Avoid pointers (arrays are preferred)
 - · Use explicit data types if suitable (e.g. bit vectors)

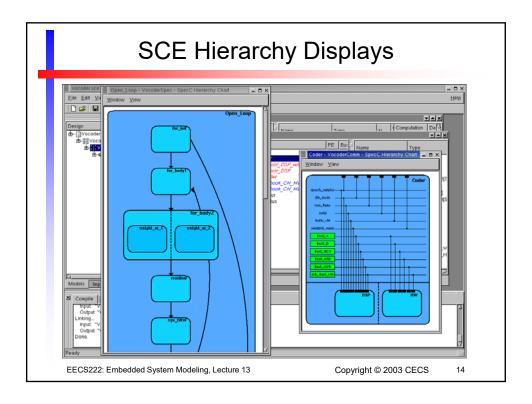
EECS222: Embedded System Modeling, Lecture 13

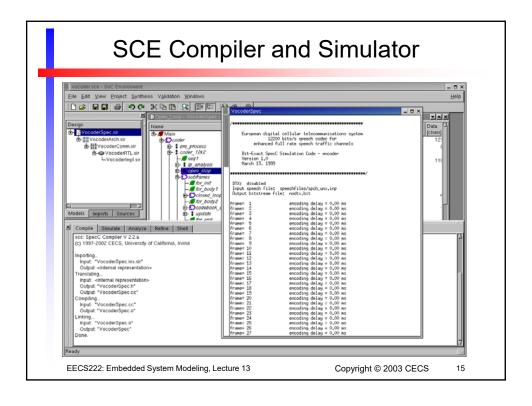
(c) 2019 R. Doemer

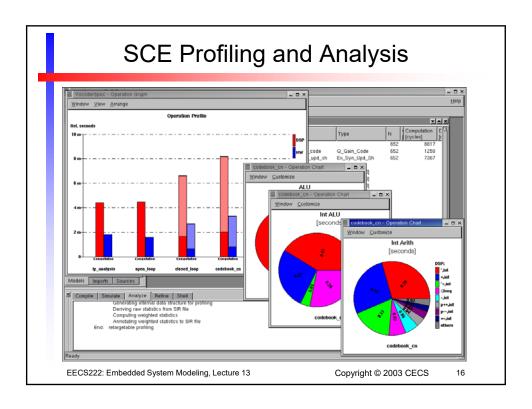
10


System-on-Chip Environment (SCE)


- Integrated Development Environment (IDE) with support of:
 - Graphical frontend (sce, scchart)
 - SLDL-aware editor (sced)
 - Compiler and simulator (scc)
 - Profiling and analysis (scprof)
 - Architecture refinement (scar)
 - RTOS refinement (scos)
 - Communication refinement (sccr)
 - RTL refinement (scrt1)
 - Software refinement (sc2c)
 - Scripting interface (scsh)
 - Tools and utilities (sir_list, sir_tree, ...)


EECS222: Embedded System Modeling, Lecture 13


(c) 2019 R. Doemer


11

SCE Demonstration

- · Application Example: GSM Vocoder
 - Enhanced full-rate voice codec
 - GSM standard for mobile telephony (GSM 06.10)
 - · Lossy voice encoding/decoding
 - Incoming speech samples @ 104 kbit/s
 - Encoded bit stream @ 12.2 kbit/s
 - Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
 - Real-time constraint:
 - max. 20ms per speech frame (max. total of 3.26s for sample speech file)
 - SpecC specification model
 - 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
 - · 73 leaf behaviors
 - 9139 formatted lines of SpecC code (~13000 lines of original C code, including comments)

EECS222: Embedded System Modeling, Lecture 13

Copyright © 2003 CECS

17