EECS222: Embedded System Modeling

EECS 222:
Embedded System Modeling
Lecture 14

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 14: Overview

+ Embedded System Design Flow
— Top-down design methodology
— Refinement-based design flow
» Specify
* Explore
* Refine
» System-on-Chip Environment (SCE)
— Profiling and performance estimation
— Design Example: GSM Vocoder
> Interactive demonstration

* Homework Assignment 7
— Performance estimation of the Canny Edge Detector

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer

(c) 2019 R. Doemer

Lecture 14

EECS222: Embedded System Modeling

S
T
R
U
Cc
T
U
R
E

Top-Down Design Methodology

= requirements

=T pure functional

= bus functional

=+ RTL/IS

= transaction level

Product specification

y

| Capture
v

Specification model

| Architecture refinement

g >
3 T3 75
° 2

Architecture model

v

| Communication refinement

Communication model

Hardware | Interface | Software
synthesis | synthesis | synthesis

C_3
RTL
P

Implementation model

v

Manufacturing

EECS222: Embedded System Modeling, Lecture 14

constraints

untimed -

estimated timing -

Proto.

timing accurate

P

)

—4.
.

[2)

cycle accurate

(c) 2019 R. Doemer

0oz-2-4

Refinement-based System Design Flow

Specification model

v

| Architecture refinement Corgp_

Architecture model

_.l Validation
Analysis

v

| Communication refinement Pr?:}o.

3
Capture
v
o)
|
B
|

Communication model

L,I Validation
Analysis

!

-RTL Hardware | Interface | Software R-T oS
P synthesis | synthesis [compilation P

Implementation model,

I_,I Validation
Analysis

EECS222: Embedded System Modeling, Lecture 14

_.l Validation
Analysis
m

(c) 2019 R. Doemer

Simulation model

Simulation model

Simulation model

Simulation model

(c) 2019 R. Doemer

Lecture 14

EECS222: Embedded System Modeling

EECS222: Embedded System Modeling, Lecture 14

SCE Modeling Engine

Specification model

Arch. refinement

Architecture model

Comm. refinement

Communication model

Cycle-a. refinement

Implementation model

Validation

Compile

Simulate

Simulate

Simulate

Simulate

Copyright © 2003 CECS

5

SCE Refinement Engine

Refinement

Alg. selection

Browsing

Capture

Spec. optimization

Allocation

Beh. partitioning

Specification model

Scheduling / RTOS

Protocol selection

Channel partitioning

Architecture model

Arbitration

Cycle scheduling

Protocol scheduling

Communication model

[Cycle-a. refil]

SW assembly

EECS222: Embedded System Modeling, Lecture 14

mplementation model

Validation

Compile

Simulate

Simulate

Simulate

Simulate

Copyright © 2003 CECS

6

(c) 2019 R. Doemer

Lecture 14

EECS222: Embedded System Modeling

SCE Exploration Engine

efinement

Alg. selection

Browsing

Validation

Compile

Spec. optimization

Allocation

Beh. partitioning

Capture

Scheduling / RTOS

Protocol selection

Channel partitioning

Arbitration

———
Protocol
models

Profile

Profiling Specification model

Simulate
Profiling data
Arch. refinement

Estimate

Architecture model
Simulate

1 results

Comm. refinement

Estimate
Estimation Communication model

T Simulate

Cycle scheduling

Protocol scheduling

1 results

SW assembly

EECS222: Embedded System Modeling, Lecture 14

Simulate

mplementation model

Copyright © 2003 CECS 7

Refinement

SCE Synthesis Engine

Alg. selection

Browsing

Validation

Compile

Spec. optimization

Allocation

Beh. partitioning

Profile
Profiling Specification model Simulate
Profiling data Verify

Dapign

Capture

Synthesize

Scheduling / RTOS

decisions

Arch. refinement

Protocol selection

Protocol
attributes

Channel partitioning

decisions

Estimate
Estimation Architecture model Simulate
] Estimation results Verify
,

Comm. refinement

Arbitration

Protocol
models

Cycle scheduling

Protocol scheduling

HW/SW synthesis

decisions

SW assembly

EECS222: Embedded System Modeling, Lecture 14

Estimate
Communication model Simulate
results Verify
Synthesize
Cycle-a. refinement
Simulate
mplementation model
Verify

Copyright © 2003 CECS

8

(c) 2019 R. Doemer

Lecture 14

EECS222: Embedded System Modeling

Refinement

Alg. selection

Browsing

Spec. optimization

—
Profiling
weights

Profiling

Allocation

——
Comp./IP

Beh. partitioning

Profiling data

Capture

Specification
do

Scheduling / RTOS

Protocol selection

Channel partitioning;

————
Protocol
attributes

Estimation results

Arch. refinement

Architecture model

Ci

Arbitration

—
Protocol
models

Cycle scheduling

Protocol scheduling

SW assembly

—
RTL
comp.

HW/SW synthesis

Design 4 decisions

ion results

omm. refinement

ommunication model

c

EECS222: Embedded System Modeling, Lecture 14

ycle-a. refinement|

mplementation model

Copyright © 2003 CECS 9

System-on-Chip Environment (SCE)

Validation

Profile

Simulate

Estimate

Simulate

Estimate

Simulate

SCE Demonstration

» Application Example: GSM Vocoder

— Exploration of Specification Model
» Simulation
» Profiling
» Performance estimation

> Interactive demonstration

EECS222: Embedded System Modeling, Lecture 14

Copyright © 2003 CECS 10

(c) 2019 R. Doemer

Lecture 14

EECS222: Embedded System Modeling Lecture 14

SCE Demonstration

» Application Example: GSM Vocoder
— Enhanced full-rate voice codec
* GSM standard for mobile telephony (GSM 06.10)
* Lossy voice encoding/decoding
* Incoming speech samples @ 104 kbit/s
» Encoded bit stream @ 12.2 kbit/s
» Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
— Real-time constraint:

* max. 20ms per speech frame
(max. total of 3.26s for sample speech file)

— SpecC specification model
* 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
+ 73 leaf behaviors

+ 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

EECS222: Embedded System Modeling, Lecture 14 Copyright © 2003 CECS "

Project Assignment 7

Task: Performance Estimation of the Canny Edge Detector

— Profiling to estimate relative computational complexity

— Instrumentation to measure absolute timing as reference

» Steps

1. Profile the application, identify performance bottle-necks
* SpecC: Use SCE profiling tools
» SystemC: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform

Deliverables

— Canny.sc or Canny.cpp (choose one!)

— Canny . txt (with numerical values for obtained results)

* Due
— Next week: February 27, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 12

(c) 2019 R. Doemer 6

EECS222: Embedded System Modeling

Project Assignment 7

» Step 1: Profile the application components
» Performance Estimation of the Canny Edge Detector
— SpecC model profiling: Use SCE profiler
» /opt/sce/bin/sce
» Create a new project, import SpecC source code
» Compile and simulate in SCE (with instrumentation)
* Run the profiler, analyze tables and charts
— SystemC model profiling: Use GNU profiler
»g++ -pg, gprof
» Compile the SystemC source code with option —pg
* Run the simulation once (with instrumentation, gmon . out)
* Run the profiler: gprof Canny
» Validate the reported call tree
» Analyze the “flat profile” for the DUT components

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 13

Project Assignment 7

» Step 1: Profile the application components,
obtain relative computational complexity
— Expected complexity comparison (in Canny . txt):

Gaussian_Smooth .-%

|--——-- Receive_Image S

|--——-- Gaussian_Kernel ...%

|--——-- BlurX - %

\-————- BlurY - %

Derivative X Y .-%

Magnitude X Y)

Non_Max_Supp ---%

Apply_Hysteresis =%
100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 14

(c) 2019 R. Doemer

Lecture 14

EECS222: Embedded System Modeling

#include <time.h>
clock_t Tstart, Tstop;
double T1 = 0.0;

Tstart = clock();
L{OF
Tstop = clock();

EECS222: Embedded System Modeling, Lecture 14

Project Assignment 7

» Step 2: Instrument the application components
» Performance Measurement of the Canny Edge Detector

» Since we do not have a prototyping platform available,
we use the department server as reference
— Instrument your model source code:

T1l = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

— Use global variables for this temporary instrumentation

(c) 2019 R. Doemer

Gaussian_Smooth

|-——--- Receive_lmage
|-——--- Gaussian_Kernel
|------ BlurX

\-———— Blury

Derivative X Y
Magnitude X Y
Non_Max_Supp
Apply_Hysteresis

EECS222: Embedded System Modeling, Lecture 14

..Sec ..
..Sec ..
..Sec ..
..Sec ..

Project Assignment 7

» Step 2: Instrument the application components,
obtain absolute timing on reference platform
— Expected complexity comparison (also in Canny . txt):

--..sec
%
-%
-%
-%
-..sec
--.sec
--..sec
...sec

(c) 2019 R. Doemer

%

-
-
-

100%

16

(c) 2019 R. Doemer

Lecture 14

