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Lecture 14: Overview

• Embedded System Design Flow
– Top-down design methodology

– Refinement-based design flow
• Specify

• Explore

• Refine

• System-on-Chip Environment (SCE)
– Profiling and performance estimation

– Design Example: GSM Vocoder

 Interactive demonstration

• Homework Assignment 7
– Performance estimation of the Canny Edge Detector
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Top-Down Design Methodology
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Refinement-based System Design Flow
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SCE Modeling Engine
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SCE Refinement Engine
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SCE Exploration Engine
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SCE Synthesis Engine
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System-on-Chip Environment (SCE)

Copyright © 2003 CECS
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SCE Demonstration

• Application Example: GSM Vocoder
– Exploration of Specification Model
 Simulation

 Profiling

 Performance estimation

 Interactive demonstration

Copyright © 2003 CECS



EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 11

SCE Demonstration

• Application Example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

Copyright © 2003 CECS

Project Assignment 7

• Task: Performance Estimation of the Canny Edge Detector
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottle-necks

• SpecC: Use SCE profiling tools

• SystemC: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with numerical values for obtained results)

• Due
– Next week: February 27, 2019, 6pm
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Project Assignment 7

• Step 1: Profile the application components
 Performance Estimation of the Canny Edge Detector

– SpecC model profiling: Use SCE profiler
 /opt/sce/bin/sce

• Create a new project, import SpecC source code

• Compile and simulate in SCE (with instrumentation)

• Run the profiler, analyze tables and charts

– SystemC model profiling: Use GNU profiler
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components
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Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):

Gaussian_Smooth ...%

|------ Receive_Image ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%
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Project Assignment 7

• Step 2: Instrument the application components
 Performance Measurement of the Canny Edge Detector

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 15

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in Canny.txt):

Gaussian_Smooth ...sec ...%

|------ Receive_Image ...sec ...%

|------ Gaussian_Kernel ...sec ...%

|------ BlurX ...sec ...%

\------ BlurY ...sec ...%

Derivative_X_Y ...sec ...%

Magnitude_X_Y ...sec ...%

Non_Max_Supp ...sec ...%

Apply_Hysteresis ...sec ...%

100%
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