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Lecture 14: Overview

+ Embedded System Design Flow
— Top-down design methodology
— Refinement-based design flow
» Specify
* Explore
* Refine
» System-on-Chip Environment (SCE)
— Profiling and performance estimation
— Design Example: GSM Vocoder
> Interactive demonstration

* Homework Assignment 7
— Performance estimation of the Canny Edge Detector
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Refinement-based System Design Flow
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System-on-Chip Environment (SCE)
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SCE Demonstration

» Application Example: GSM Vocoder

— Exploration of Specification Model
» Simulation
» Profiling
» Performance estimation

> Interactive demonstration
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SCE Demonstration

» Application Example: GSM Vocoder
— Enhanced full-rate voice codec
* GSM standard for mobile telephony (GSM 06.10)
* Lossy voice encoding/decoding
* Incoming speech samples @ 104 kbit/s
» Encoded bit stream @ 12.2 kbit/s
» Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
— Real-time constraint:

* max. 20ms per speech frame
(max. total of 3.26s for sample speech file)

— SpecC specification model
* 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
+ 73 leaf behaviors

+ 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)
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Project Assignment 7

Task: Performance Estimation of the Canny Edge Detector

— Profiling to estimate relative computational complexity

— Instrumentation to measure absolute timing as reference

» Steps

1. Profile the application, identify performance bottle-necks
* SpecC: Use SCE profiling tools
» SystemC: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform

Deliverables

— Canny.sc or Canny.cpp (choose one!)

— Canny . txt (with numerical values for obtained results)

* Due
— Next week: February 27, 2019, 6pm
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Project Assignment 7

» Step 1: Profile the application components
» Performance Estimation of the Canny Edge Detector
— SpecC model profiling:  Use SCE profiler
» /opt/sce/bin/sce
» Create a new project, import SpecC source code
» Compile and simulate in SCE (with instrumentation)
* Run the profiler, analyze tables and charts
— SystemC model profiling: Use GNU profiler
»g++ -pg, gprof
» Compile the SystemC source code with option —pg
* Run the simulation once (with instrumentation, gmon . out)
* Run the profiler: gprof Canny
» Validate the reported call tree
» Analyze the “flat profile” for the DUT components
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Project Assignment 7

» Step 1: Profile the application components,
obtain relative computational complexity
— Expected complexity comparison (in Canny . txt):

Gaussian_Smooth .-%

|--——-- Receive_Image S

|--——-- Gaussian_Kernel ...%

|--——-- BlurX - %

\-————- BlurY - %

Derivative X Y .-%

Magnitude X Y )

Non_Max_Supp ---%

Apply_Hysteresis =%
100%
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#include <time.h>
clock_t Tstart, Tstop;
double T1 = 0.0;

Tstart = clock();
L{OF
Tstop = clock();
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Project Assignment 7

» Step 2: Instrument the application components
» Performance Measurement of the Canny Edge Detector

» Since we do not have a prototyping platform available,
we use the department server as reference
— Instrument your model source code:

T1l = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

— Use global variables for this temporary instrumentation
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Gaussian_Smooth

|-——--- Receive_lmage
|-——--- Gaussian_Kernel
|------ BlurX

\-———— Blury

Derivative X Y
Magnitude X Y
Non_Max_Supp
Apply_Hysteresis
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Project Assignment 7

» Step 2: Instrument the application components,
obtain absolute timing on reference platform
— Expected complexity comparison (also in Canny . txt):

--..sec
%
-%
-%
-%
-..sec
--.sec
--..sec
...sec
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