
EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 14

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 2

Lecture 14: Overview

• Embedded System Design Flow
– Top-down design methodology

– Refinement-based design flow
• Specify

• Explore

• Refine

• System-on-Chip Environment (SCE)
– Profiling and performance estimation

– Design Example: GSM Vocoder

 Interactive demonstration

• Homework Assignment 7
– Performance estimation of the Canny Edge Detector

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 3

Top-Down Design Methodology

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 4

Refinement-based System Design Flow

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 5

SCE Modeling Engine

Specification model

Architecture model

Communication model

Arch. refinement

Comm. refinement

Cycle-a. refinement

Implementation model

Capture

Simulate

Compile

Simulate

Simulate

Simulate

Validation

Copyright © 2003 CECS

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 6

SCE Refinement Engine

Specification model

Architecture model

Communication model

Arch. refinement

Comm. refinement

Allocation

Beh. partitioning

Scheduling / RTOS

Refinement

Protocol selection

Channel partitioning

Spec. optimization

Arbitration

Cycle-a. refinement

Implementation model

Capture

Cycle scheduling

Protocol scheduling

SW assembly

Browsing

Alg. selection

Validation

Compile

Simulate

Simulate

Simulate

Simulate

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 7

SCE Exploration Engine

Specification model

Architecture modelEstimation

Profiling

Profiling data

Communication model

Profiling
weights

Arch. refinement

Comm. refinement

Estimation results

Estimation

Estimation results

Cycle-a. refinement

Implementation model

Capture

Validation

Protocol
models

Comp. /
IP

models

Profile

Estimate

Estimate

Refinement

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Channel partitioning

Spec. optimization

Cycle scheduling

Protocol scheduling

Browsing

Arbitration

SW assembly

Alg. selection

Simulate

Compile

Simulate

Simulate

Simulate

Copyright © 2003 CECS

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 8

SCE Synthesis Engine

Specification model

Architecture modelEstimation

Profiling

Profiling data

Design
decisions

Communication model

Profiling
weights

Arch. synthesis

Arch. refinement

Comm. synthesis

Comm. refinement

Refinement

Estimation results

Design decisions

Estimation

HW/SW synthesis

Estimation results

Design decisions Cycle-a. refinement

Implementation model

Capture

RTL
comp.

Validation

Protocol
models

Comp. /
IP

attributes

Protocol
attributes

Comp. / IP
models

Verify

Synthesize

Synthesize

Synthesize

Verify

Verify

Verify

Compile

Estimate

Simulate

Simulate

Estimate

Simulate

Profile

Simulate

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Channel partitioning

Spec. optimization

Cycle scheduling

Protocol scheduling

Browsing

Arbitration

SW assembly

Alg. selection

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 9

System-on-Chip Environment (SCE)

Copyright © 2003 CECS

Specification
model

Architecture modelEstimation

Profiling

Profiling data

Communication model

Profiling
weights

Arch. refinement

Comm. refinement

Estimation results

Estimation

Estimation results

Cycle-a. refinement

Implementation model

Capture

Validation

Protocol
models

Comp. / IP
models

Profile

Estimate

Estimate

Refinement

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Channel partitioning

Spec. optimization

Cycle scheduling

Protocol scheduling

Browsing

Arbitration

SW assembly

Alg. selection

Simulate

Compile

Simulate

Simulate

Simulate

Simulate

Design decisions

RTL
comp.

HW/SW synthesis
Synthesize

Comp. / IP
attributes

Protocol
attributes

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 10

SCE Demonstration

• Application Example: GSM Vocoder
– Exploration of Specification Model
 Simulation

 Profiling

 Performance estimation

 Interactive demonstration

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 11

SCE Demonstration

• Application Example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

Copyright © 2003 CECS

Project Assignment 7

• Task: Performance Estimation of the Canny Edge Detector
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottle-necks

• SpecC: Use SCE profiling tools

• SystemC: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with numerical values for obtained results)

• Due
– Next week: February 27, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 12

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 7

Project Assignment 7

• Step 1: Profile the application components
 Performance Estimation of the Canny Edge Detector

– SpecC model profiling: Use SCE profiler
 /opt/sce/bin/sce

• Create a new project, import SpecC source code

• Compile and simulate in SCE (with instrumentation)

• Run the profiler, analyze tables and charts

– SystemC model profiling: Use GNU profiler
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 13

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):

Gaussian_Smooth ...%

|------ Receive_Image ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 14

EECS222: Embedded System Modeling Lecture 14

(c) 2019 R. Doemer 8

Project Assignment 7

• Step 2: Instrument the application components
 Performance Measurement of the Canny Edge Detector

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 15

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in Canny.txt):

Gaussian_Smooth ...sec ...%

|------ Receive_Image ...sec ...%

|------ Gaussian_Kernel ...sec ...%

|------ BlurX ...sec ...%

\------ BlurY ...sec ...%

Derivative_X_Y ...sec ...%

Magnitude_X_Y ...sec ...%

Non_Max_Supp ...sec ...%

Apply_Hysteresis ...sec ...%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 16

