
EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 16

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 2

Lecture 16: Overview

• Project Assignment 7
– Performance estimation of the Canny Edge Detector

– Profiling results

– Measurement results

• Project Discussion
– Status and next steps

• Project Assignment 8
– Back-annotation of timing estimates

– Pipelining and parallelization of the Canny Edge Detector

 Model development on the whiteboard

• Simulator run-time facilities
– Observing simulated time in SystemC

– Observing simulated time in SpecC

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 2

Project Assignment 7

• Task: Performance Estimation of Canny Edge Detector
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottle-necks

• SpecC: Use SCE profiling tools

• SystemC: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with numerical values for obtained results)

• Due
– Next week: February 27, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 3

Project Assignment 7

• Step 1: Profile the application components
 Performance Estimation of the Canny Edge Detector

– SpecC model profiling: Use SCE profiler
 /opt/sce/bin/sce

• Create a new project, import SpecC source code

• Compile and simulate in SCE (with instrumentation)

• Run the profiler, analyze tables and charts

– SystemC model profiling: Use GNU profiler
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 4

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 3

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):

Gaussian_Smooth ...%

|------ Receive_Image ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 5

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):
SpecC: SCE profiling results
Gaussian_Smooth 30.5G 56.9%

|------ Receive_Image 0.0G 0.0%

|------ Gaussian_Kernel 0.0G 0.0%

|------ BlurX 15.2G 28.4%

\------ BlurY 15.3G 28.5%

Derivative_X_Y 4.3G 8.1%

Magnitude_X_Y 3.7G 6.9%

Non_Max_Supp 9.2G 17.2%

Apply_Hysteresis 5.8G 10.8%

100%

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 6

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 4

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):
SpecC: SCE profiling results

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 7

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):
SystemC: GPROF profiling results
Gaussian_Smooth 9.15s 61.7%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 4.34s 29.2%

\------ BlurY 4.81s 32.4%

Derivative_X_Y 0.95s 6.4%

Magnitude_X_Y 0.66s 4.4%

Non_Max_Supp 2.10s 14.2%

Apply_Hysteresis 1.98s 13.3%

100%

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 8

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 5

Project Assignment 7

• Step 2: Instrument the application components
 Performance Measurement of the Canny Edge Detector

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 9

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in Canny.txt):

Gaussian_Smooth ...sec ...%

|------ Receive_Image ...sec ...%

|------ Gaussian_Kernel ...sec ...%

|------ BlurX ...sec ...%

\------ BlurY ...sec ...%

Derivative_X_Y ...sec ...%

Magnitude_X_Y ...sec ...%

Non_Max_Supp ...sec ...%

Apply_Hysteresis ...sec ...%

100%

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 10

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 6

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on server platform

– Expected complexity comparison (also in Canny.txt):
SpecC: Timing measurement results
Gaussian_Smooth 6.83s 52.2%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 2.97s 22.7%

\------ BlurY 3.86s 29.5%

Derivative_X_Y 1.12s 8.6%

Magnitude_X_Y 1.04s 7.9%

Non_Max_Supp 2.08s 15.9%

Apply_Hysteresis 2.02s 15.4%

100%

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 11

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on server platform

– Expected complexity comparison (also in Canny.txt):
SystemC: Timing measurement results
Gaussian_Smooth 10.82s 57.8%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 5.15s 27.5%

\------ BlurY 5.67s 30.3%

Derivative_X_Y 1.93s 10.3%

Magnitude_X_Y 1.49s 8.0%

Non_Max_Supp 2.09s 11.2%

Apply_Hysteresis 2.38s 12.7%

100%

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 12

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 7

Project Discussion

• Instrument the application components,
obtain absolute timing on prototyping platform
– Measured timing on Raspberry Pi board:

ARM-based quad-core processor (1.2GHz)

Receive_Image 0 ms per frame

Make_Kernel 0 ms per frame

BlurX 1880 ms per frame

BlurY 2010 ms per frame

Derivative_X_Y 530 ms per frame

Magnitude_X_Y 910 ms per frame

Non_Max_Supp 960 ms per frame

Apply_Hysteresis 740 ms per frame

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 13

Project Discussion

• Discussion Questions
– Does the timing meet our real-time goals?

– What can be done to improve the speed?

 Pipelining

 Parallelization

 Hardware optimizations

 Software optimizations

 Application adjustments

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 14

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 8

Project Assignment 8

• Task: Pipelining and Parallelization of the Canny Model
– Pipeline and parallelize the model to maximize throughput

• Steps
1. Instrument model with logging of simulation time and frame delay

2. Back-annotate estimated timing in DUT components

3. Instrument model with logging of throughput (FPS)

4. Pipeline the DUT into stages for each component

5. Integrate Gaussian Smooth components into pipeline stages

6. Slice the BlurX and BlurY blocks into parallel components

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with observed timing and frame delays)

• Due: Next week: March 6, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 15

Project Assignment 8

• Step 1: Logging of simulation time and frame delay
– Expected execution log with timing instrumentation

0: Stimulus sent frame 1.
0: Stimulus sent frame 2.
0: Monitor received frame 1 with 0 ms delay.
0: Stimulus sent frame 3.
0: Monitor received frame 2 with 0 ms delay.
0: Stimulus sent frame 4.
0: Monitor received frame 3 with 0 ms delay.
[...]
0: Stimulus sent frame 20.
0: Monitor received frame 19 with 0 ms delay.
0: Monitor received frame 20 with 0 ms delay.
0: Monitor exits simulation.

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 16

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 9

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 17

Hint: SystemC Simulation

• Compilation and Simulation
– g++ DesignName.cpp -I$SYSTEMC/include \

-L$SYSTEMC/lib-linux64 \
-Xlinker -R -Xlinker $SYSTEMC/lib-linux64 \
-lsystemc -o simple_fifo

– ./DesignName

– Header file systemc.h
• Access to simulation time

– Time units: enum sc_time_unit {SC_FS, SC_PS, SC_NS,
SC_US, SC_MS, SC_SEC};

– Constructor: sc_time(double, sc_time_unit)

– Current simulation time: sc_time_stamp(), sc_delta_count()

– Conversion functions: .to_string().c_str()

• Reference: Doulos SystemC Training (part 1, slide 40)

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 18

Hint: SystemC Simulation

• Observing Simulated Time in SystemC
• Example: Print the current simulation time
#include “systemc.h”

...

sc_time t;

uint64 d;

...

t = sc_time_stamp(); d = sc_delta_count();

printf(“Time is now %s pico seconds.\n”, t.to_string().c_str());

printf(“(delta count is %ull)\n”, d);

wait(42000, SC_NS);

printf(“Time is now %s pico seconds.\n”, t.to_string().c_str());

printf(“Time is now %s nano seconds.\n”,

(t/1000).to_string().c_str());

...

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 10

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 19

Hint: SpecC Simulation

• Compilation and Simulation
– scc DesignName –sc2out –vv –ww

– ./DesignName

– Header file sim.sh
• Access to simulation time

– macros PICO_SEC, NANO_SEC, MICRO_SEC,
MILLI_SEC, SEC

– typedef sim_time, sim_delta, sim_time_string

– function now(), delta()

– conversion functions time2str(), str2time()

• Handling of bit vectors
– conversion functions bit2str(), ubit2str(), str2bit(),
str2ubit()

• Handling of long-long values
– conversion functions ll2str(), ull2str(), str2ll(),
str2ull()

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 20

Hint: SpecC Simulation

• SpecC Simulation Time
• Example: Print the current simulation time
#include <sim.sh>

...

sim_time t;

sim_delta d;

sim_time_string buffer;

...

t = now(); d = delta();

printf(“Time is now %s pico seconds.\n”, time2str(buffer, t));

printf(“(delta count is %s)\n”, time2str(buffer, d);

waitfor 42000 NANO_SEC;

printf(“Time is now %s pico seconds.\n”, time2str(buffer, t));

printf(“Time is now %s nano seconds.\n”,

time2str(buffer, t/(1 NANO_SEC)));

...

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 11

Project Assignment 8

• Step 1: Logging of simulation time and frame delay
– Extended test bench structure:

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 21

(image from a prior course)

Project Assignment 8

• Step 2: Back-annotate timing in DUT components
– Insert wait-for-time statements into your model

– Assume Rasberry Pi performance:

Receive_Image 0 ms per frame

Make_Kernel 0 ms per frame

BlurX 1880 ms per frame

BlurY 2010 ms per frame

Derivative_X_Y 530 ms per frame

Magnitude_X_Y 910 ms per frame

Non_Max_Supp 960 ms per frame

Apply_Hysteresis 740 ms per frame

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 22

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 12

Project Assignment 8

• Step 3: Logging of frame throughput
– Expected execution log with throughput instrumentation

[...]
133570: Monitor received frame 19 with 28120 ms delay.
133570: 7.030 seconds after previous frame, 0.142 FPS.
140600: Monitor received frame 20 with 28120 ms delay.
140600: 7.030 seconds after previous frame, 0.142 FPS.
140600: Monitor exits simulation.

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 23

Project Assignment 8

• Step 4: Pipeline the DUT into stages

• Step 5: Integrate Gaussian Smooth into pipeline stages
– Discussion on whiteboard: Chart of refined DUT structure

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 24

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 13

Project Assignment 8

• Step 6: Slice the BlurX and BlurY blocks
into parallel components

– Discussion on white board

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 25

Project Assignment 8

• Step 6: Slice the BlurX and BlurY blocks
into parallel components

DUT canny
|------ Gaussian_Smooth gaussian_smooth
| |------ Receive_Image receive
| \------ Gaussian_Kernel gauss
|------ BlurX blurX
| |------ BlurX_Slice sliceX1
| |------ BlurX_Slice sliceX2
| | [...]
| \------ BlurX_Slice sliceX8
|------ BlurY blurY
| |------ BlurY_Slice sliceY1
| | [...]
| \------ BlurY_Slice sliceY8
|------ Derivative_X_Y derivative_x_y
|------ Magnitude_X_Y magnitude_x_y
|------ Non_Max_Supp non_max_supp
\------ Apply_Hysteresis apply_hysteresis

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 26

EECS222: Embedded System Modeling Lecture 16

(c) 2019 R. Doemer 14

Project Assignment 8

• Deliverable
– Observed timing results after each refinement step:

Model Frame Delay Throughput Total time
CannyA8_step1 ... ms ... FPS ... ms
CannyA8_step2 ... ms ... FPS ... ms
CannyA8_step3 ... ms ... FPS ... ms
CannyA8_step4 ... ms ... FPS ... ms
CannyA8_step5 ... ms ... FPS ... ms
CannyA8_step6 ... ms ... FPS ... ms

EECS222: Embedded System Modeling, Lecture 16 (c) 2019 R. Doemer 27

