
EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 20

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 2

Lecture 20: Overview

• Course Administration
– Instructor evaluation

– Final exam

• EECS 222 Project
– Review

– Discussion

• Unified Modeling Language (UML)
– Overview

– Example Diagrams

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 2

Course Administration

• Final Course Evaluation
– 9th through 10th week
– Feb. 25, 2019, through March 17, 2019, 11:45pm
– Open until next Sunday night
– Online via EEE evaluation application

• Evaluation of Course and Instructor
– Voluntary
– Anonymous
– Very valuable!

Please help to improve this class!
– Please spend 5 minutes!

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 3

Course Administration

• Final Exam
– Allocated time

• Thursday, March 21, 2019, 8:00-10:00am

– Location
• Regular classroom, SSTR 103

– Format: Written Exam
• Exam sheet with questions

• Answers to be filled in

• Open notes, open course materials

• Open laptop, open browser, open server login

• No emails, no instant messaging!

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 4

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 3

Project Review and Discussion

• Project Assignment 1
– Introduction to the Canny Edge Detector in ANSI C

• Project Assignment 4
– SLDL model in SpecC or SystemC

• Project Assignment 5
– Video stream processing and structural test bench model

• Project Assignment 6
– Structural refinement of DUT and Gaussian Smooth

• Project Assignment 7
– Performance estimation and measurement

• Project Assignment 8
– Pipelining and parallelization of the model

• Project Assignment 9
– Compiler and application optimizations

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 5

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Camera

– Application Source and Documentation:
• http://marathon.csee.usf.edu/edge/edge_detection.html

• http://en.wikipedia.org/wiki/Canny_edge_detector

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 6

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 4

Project Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application

4. Fix a bug and clean-up the source code

• Deliverables
– Source code and text file: canny.c, canny.txt

• Due
– Next week: January 16, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 7

Project Assignment 4

• Task: SLDL Model of the Canny Edge Detector
– Convert ANSI-C source code into SLDL model

– Choose either SpecC or SystemC for simulation

• Steps
1. Prepare clean SLDL source code without compiler warnings

2. Fix configuration parameters to compile-time constants

3. Remove or replace dynamic memory allocation
No calls to malloc(), calloc(), and free() in the model

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt

• Due
– Next week: February 6, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 8

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 5

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic Edge Detection in a Digital Video Camera

– Video taken by a drone hovering over UCI Engineering Plaza
• Available on the server: ~eecs222/public/video/

• High resolution, 2704 by 1520 pixes

• Video length 9 seconds, using 20 extracted frames for test bench model

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 9

EngPlaza001.bmp EngPlaza001_edges.pgm

Project Assignment 5

• Task: Structural Test Bench Model
– Convert the application to process a stream of video frames

– Choose either SpecC or SystemC for modeling and simulation

– Add test bench structure to the model from Assignment 4

• Steps
1. Convert the application to process a stream of video frames

2. Create test bench structure: Stimulus, Platform, Monitor

3. Create platform structure: DataIn, DUT, DataOut

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt

• Due
– Next week: February 13, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 10

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 6

Project Assignment 5

• Task: Structural Test Bench Model
– Expected instance tree

Main / Top

|------ Stimulus stimulus

|------ Platform platform

| |------ DataIn din

| |------ DUT canny

| \------ DataOut dout

\------ Monitor monitor

– Communication via standard channels
• SystemC: sc_fifo<IMAGE> based on class IMAGE

• SpecC: c_img_queue based on typedef img

 Pay attention to stack sizes!

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 11

Project Assignment 5

• Structural Test Bench for the Canny Edge Detector
– Discussion on whiteboard: Top-level structure, platform for DUT

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 12

White board photo goes here!

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 7

Project Assignment 6

• Task: Hierarchical DUT of the Canny Edge Detector
– Refine the structural hierarchy of the DUT block

– Refine the structural hierarchy of the Gaussian Smooth block

• Steps
1. Refine the DUT structure

• Gaussian Smooth, Derivative, …, Apply Hysteresis

2. Refine the Gaussian Smooth structure
• Receive Image, Gaussian Kernel, BlurX, BlurY

3. Visualize the structural hierarchy of the model

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt

• Due: February 20, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 13

Project Assignment 6

• Structural model of the DUT of the Canny Edge Detector
– Discussion on whiteboard: Refined DUT structure

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 14

White board photo goes here!

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 8

Project Assignment 6

• Step 1: Refined hierarchy of the DUT block
– Expected instance tree
Platform platform

|------ DataIn din

|------ DUT canny

| |------ Gaussian_Smooth gaussian_smooth

| |------ Derivative_X_Y derivative_x_y

| |------ Magnitude_X_Y magnitude_x_y

| |------ Non_Max_Supp non_max_supp

| \------ Apply_Hysteresis apply_hysteresis

\------ DataOut dout

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 15

Project Assignment 6

• Step 2: Refined hierarchy of the Gaussian Smooth
– Expected instance tree
DUT canny

|------ Gaussian_Smooth gaussian_smooth

| |------ Receive_Image receive

| |------ Gaussian_Kernel gauss

| |------ BlurX blurX

| \------ BlurY blurY

|------ Derivative_X_Y derivative_x_y

|------ Magnitude_X_Y magnitude_x_y

|------ Non_Max_Supp non_max_supp

\------ Apply_Hysteresis apply_hysteresis

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 16

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 9

Project Assignment 6

• Structural model of the DUT of the Canny Edge Detector
– Discussion on whiteboard: Refined Gaussian Smooth structure

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 17

White board photo goes here!

Project Assignment 7

• Task: Performance Estimation of Canny Edge Detector
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottle-necks

• SpecC: Use SCE profiling tools

• SystemC: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with numerical values for obtained results)

• Due
– Next week: February 27, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 18

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 10

Project Assignment 7

• Step 1: Profile the application components
 Performance Estimation of the Canny Edge Detector

– SpecC model profiling: Use SCE profiler
 /opt/sce/bin/sce

• Create a new project, import SpecC source code

• Compile and simulate in SCE (with instrumentation)

• Run the profiler, analyze tables and charts

– SystemC model profiling: Use GNU profiler
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 19

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):
SpecC: SCE profiling results
Gaussian_Smooth 30.5G 56.9%

|------ Receive_Image 0.0G 0.0%

|------ Gaussian_Kernel 0.0G 0.0%

|------ BlurX 15.2G 28.4%

\------ BlurY 15.3G 28.5%

Derivative_X_Y 4.3G 8.1%

Magnitude_X_Y 3.7G 6.9%

Non_Max_Supp 9.2G 17.2%

Apply_Hysteresis 5.8G 10.8%

100%

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 20

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 11

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):
SpecC: SCE profiling results

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 21

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in Canny.txt):
SystemC: GPROF profiling results
Gaussian_Smooth 9.15s 61.7%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 4.34s 29.2%

\------ BlurY 4.81s 32.4%

Derivative_X_Y 0.95s 6.4%

Magnitude_X_Y 0.66s 4.4%

Non_Max_Supp 2.10s 14.2%

Apply_Hysteresis 1.98s 13.3%

100%

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 22

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 12

Project Assignment 7

• Step 2: Instrument the application components
 Performance Measurement of the Canny Edge Detector

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 23

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on server platform

– Expected complexity comparison (also in Canny.txt):
SpecC: Timing measurement results
Gaussian_Smooth 6.83s 52.2%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 2.97s 22.7%

\------ BlurY 3.86s 29.5%

Derivative_X_Y 1.12s 8.6%

Magnitude_X_Y 1.04s 7.9%

Non_Max_Supp 2.08s 15.9%

Apply_Hysteresis 2.02s 15.4%

100%

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 24

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 13

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on server platform

– Expected complexity comparison (also in Canny.txt):
SystemC: Timing measurement results
Gaussian_Smooth 10.82s 57.8%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 5.15s 27.5%

\------ BlurY 5.67s 30.3%

Derivative_X_Y 1.93s 10.3%

Magnitude_X_Y 1.49s 8.0%

Non_Max_Supp 2.09s 11.2%

Apply_Hysteresis 2.38s 12.7%

100%

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 25

Project Assignment 8

• Task: Pipelining and Parallelization of the Canny Model
– Pipeline and parallelize the model to maximize throughput

• Steps
1. Instrument model with logging of simulation time and frame delay

2. Back-annotate estimated timing in DUT components

3. Instrument model with logging of throughput (FPS)

4. Pipeline the DUT into stages for each component

5. Integrate Gaussian Smooth components into pipeline stages

6. Slice the BlurX and BlurY blocks into parallel components

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with observed timing and frame delays)

• Due: Next week: March 6, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 26

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 14

Project Assignment 8

• Step 1: Logging of simulation time and frame delay
– Expected execution log with timing instrumentation

0: Stimulus sent frame 1.
0: Stimulus sent frame 2.
0: Monitor received frame 1 with 0 ms delay.
0: Stimulus sent frame 3.
0: Monitor received frame 2 with 0 ms delay.
0: Stimulus sent frame 4.
0: Monitor received frame 3 with 0 ms delay.
[...]
0: Stimulus sent frame 20.
0: Monitor received frame 19 with 0 ms delay.
0: Monitor received frame 20 with 0 ms delay.
0: Monitor exits simulation.

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 27

Project Assignment 8

• Step 1: Logging of simulation time and frame delay
– Extended test bench structure:

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 28

(image from a prior course)

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 15

Project Assignment 8

• Step 2: Back-annotate timing in DUT components
– Insert wait-for-time statements into your model

– Measured timing on Raspberry Pi board:
ARM-based quad-core processor (1.2GHz)

Receive_Image 0 ms per frame

Make_Kernel 0 ms per frame

BlurX 1880 ms per frame

BlurY 2010 ms per frame

Derivative_X_Y 530 ms per frame

Magnitude_X_Y 910 ms per frame

Non_Max_Supp 960 ms per frame

Apply_Hysteresis 740 ms per frame

Total 7030 ms per frame

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 29

Project Assignment 8

• Step 3: Logging of frame throughput
– Expected execution log with throughput instrumentation

[...]
133570: Monitor received frame 19 with 28120 ms delay.
133570: 7.030 seconds after previous frame, 0.142 FPS.
140600: Monitor received frame 20 with 28120 ms delay.
140600: 7.030 seconds after previous frame, 0.142 FPS.
140600: Monitor exits simulation.

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 30

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 16

Project Assignment 8

• Step 4: Pipeline the DUT into stages

• Step 5: Integrate Gaussian Smooth into pipeline stages
– Discussion on whiteboard: Chart of refined DUT structure

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 31

Project Assignment 8

• Step 6: Slice the BlurX and BlurY blocks
into parallel components

– Discussion on white board

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 32

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 17

Project Assignment 8

• Step 6: Slice the BlurX and BlurY blocks
into parallel components

DUT canny
|------ Gaussian_Smooth gaussian_smooth
| |------ Receive_Image receive
| \------ Gaussian_Kernel gauss
|------ BlurX blurX
| |------ BlurX_Slice sliceX1
| |------ BlurX_Slice sliceX2
| | [...]
| \------ BlurX_Slice sliceX8
|------ BlurY blurY
| |------ BlurY_Slice sliceY1
| | [...]
| \------ BlurY_Slice sliceY8
|------ Derivative_X_Y derivative_x_y
|------ Magnitude_X_Y magnitude_x_y
|------ Non_Max_Supp non_max_supp
\------ Apply_Hysteresis apply_hysteresis

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 33

Project Assignment 8

• Deliverable
– Timing observed after each step: SpecC models

Model Frame Delay Throughput Total time
CannyA8_step1 0 ms n/a 0 ms
CannyA8_step2 28120 ms n/a 140600 ms
CannyA8_step3 28120 ms 0.142 FPS 140600 ms
CannyA8_step4 27970 ms 0.257 FPS 90210 ms
CannyA8_step5 18830 ms 0.498 FPS 48850 ms
CannyA8_step6 9380 ms 1.042 FPS 21866 ms

– Timing observed after each step: SystemC models
Model Frame Delay Throughput Total time
CannyA8_step1 0 ms n/a 0 ms
CannyA8_step2 17340 ms n/a 45220 ms
CannyA8_step3 17340 ms 0.498 FPS 45220 ms
CannyA8_step4 17340 ms 0.498 FPS 45220 ms
CannyA8_step5 18900 ms 0.498 FPS 45220 ms
CannyA8_step6 12260 ms 1.042 FPS 21866 ms

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 34

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 18

• Discussion Questions
– Does the timing meet our real-time goals?

– How far off is it?

– What can be done to improve the speed?

 Pipelining

 Parallelization

 Hardware optimizations

 Software optimizations

 Application adjustments

•
– No.

– 7030/33 = 213x

–

 A8, steps 4 and 5

 A8, step 6

 GPU or ASIC for BlurX, BlurY

 A9, steps 1, 2, and 3

Project Discussion

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 35

• Model Performance Overview
– Discussion on the whiteboard

Project Discussion

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 36

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 19

Project Assignment 9

• Task: Throughput optimization of Canny Edge Decoder
– Utilize compiler optimizations

– Replace floating-point with fixed-point arithmetic

• Steps
1. Turn on compiler optimizations, measure speedup per block

2. Apply speedup to back-annotated timing (overall 2.5x)

3. Replace floating-point with fixed-point arithmetic in NMS block
and observe speed-vs.-quality trade-off

• Deliverables
– Canny.sc or Canny.cpp (choose one!)

– Canny.txt (with observed throughput and frame delays)

• Due:
– Next week: March 13, 2019, 6pm

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 37

Project Assignment 9

• Deliverables
– Speed-up values observed for each block: SpecC Model

T1 = 0.00ms / 0.00ms = n/a
T2 = 2.97ms / 0.97ms = 3.06
T3 = 3.86ms / 1.05ms = 3.68
T4 = 1.12ms / 0.39ms = 2.87
T5 = 1.04ms / 0.85ms = 1.22
T6 = 2.08ms / 1.32ms = 1.58
T7 = 2.02ms / 0.82ms = 2.46
Tot = 13.09ms / 5.40ms = 2.42

– Timing observed after each step: SpecC Model

Model Frame Delay Throughput Total time
CannyA9_step2 3752 ms 2.604 FPS 8746 ms
CannyA9_step3 3572 ms 2.747 FPS 8346 ms

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 38

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 20

Project Assignment 9

• Deliverables
– Speed-up values observed for each block: SystemC Model

T1 = 0.00ms / 0.00ms = n/a
T2 = 5.15ms / 0.91ms = 5.66
T3 = 5.67ms / 1.19ms = 4.76
T4 = 1.93ms / 0.32ms = 6.03
T5 = 1.49ms / 0.85ms = 1.75
T6 = 2.09ms / 1.21ms = 1.73
T7 = 2.38ms / 0.79ms = 3.01
Tot = 18.71ms / 5.27ms = 3.55

– Timing observed after each step: SystemC Model

Model Frame Delay Throughput Total time
CannyA9_step2 5428 ms 2.604 FPS 8746500 us
CannyA9_step3 5020 ms 2.747 FPS 8338500 us

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 39

• Discussion Questions
– Does the timing meet our real-time goals?

– How far off is it?

– What can be done to improve the speed?

 Pipelining

 Parallelization

 Hardware optimizations

 Software optimizations

 Application adjustments

•
– No.

– 7030/33 = 213x

–

 A8, steps 4 and 5

 A8, step 6

 GPU or ASIC for BlurX, BlurY

 A9, steps 1, 2, and 3

 Discussion, future work
 Keep improving pipeline bottlenecks

 Accept lower image quality (i.e. fixed-point calculations)

 Accept lower frame rate

 Accept lower image resolution

 …

Project Discussion

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 40

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 21

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 41

Unified Modeling Language (UML)

• Goals
– Raising the Level of Abstraction
– Modeling of software applications

 before coding!
– Specification of software architecture
– High-level description of software architecture to enable

• scalability
• security
• robustness
• maintenance
• extendability
• code reuse

– Model Driven Architecture (MDA)

• Status
– UML 2.0: Modeling Language in Software Engineering
– standardized by OMG (Object Management Group) in 1997
– standardized by ISO (Intl. Org. for Standardization) in 2005

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 42

Unified Modeling Language (UML)

• What is UML?
– Graphical representation of …

• Software architecture
• Software structure
• Software behavior
• Object relations
• ...

– 13 standard diagrams
• Specification
• Design
• Documentation

 Not executable!
– Commercial tools available for …

• Graphical capture
• Editing
• Code generation (template code)

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 22

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 43

Unified Modeling Language (UML)

• UML Standard Diagrams
– Structure Diagrams

• Class Diagram
• Object Diagram
• Component Diagram
• Composite Structure Diagram
• Package Diagram
• Deployment Diagram

– Behavior Diagrams
• Use Case Diagram
• Activity Diagram
• State Machine Diagram

– Interaction Diagrams
• Sequence Diagram
• Communication Diagram
• Timing Diagram
• Interaction Overview Diagram

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 44

Unified Modeling Language (UML)

• UML Resources
– Online Documents

• Object Management Group (OMG)
– www.uml.org

– Online Tutorials
– https://www.tutorialspoint.com/uml/

– http://www.sparxsystems.com/uml-tutorial.html

– Invited Talk at UCI in 2004
• Dr. Wolfgang Mueller, C-LAB, Paderborn, Germany

• Source of the following UML diagram examples

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 23

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 45

Unified Modeling Language (UML)

• Class Diagram Example

(source:
W. Mueller)

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 46

Unified Modeling Language (UML)

• Package Diagram Example

(source:
W. Mueller)

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 24

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 47

Unified Modeling Language (UML)

(source:
W. Mueller)

• Component Diagram Example

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 48

Unified Modeling Language (UML)

(source:
W. Mueller)

• Composite Structure Diagram Example

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 25

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 49

Unified Modeling Language (UML)

(source:
W. Mueller)

• Deployment Diagram Example

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 50

Unified Modeling Language (UML)

• Activity Diagram Example

(source:
W. Mueller)

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 26

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 51

Unified Modeling Language (UML)

• Activity Diagram Example with “swim lanes”

(source:
W. Mueller)

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 52

Unified Modeling Language (UML)

(source:
W. Mueller)

• Sequence Diagram Example

EECS222: Embedded System Modeling Lecture 20

(c) 2019 R. Doemer 27

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 53

Unified Modeling Language (UML)

• Use Case Diagram Examples

(source:
W. Mueller)

EECS222: Embedded System Modeling, Lecture 20 (c) 2019 R. Doemer 54

Unified Modeling Language (UML)

(source:
W. Mueller)

• State Machine Diagram Examples

