Selected Slides for EECS 222,

Track 3: ESL and SystemC Part 2 (RD, 04/24/17)

The Definitive Guide to SystemC:
The SystemC Language

David C Black, Doulos

. A
DESIGN
le . AUTOMATION

THURSDAY IS
TRAINING DAY

Copyright © 2014-2015 by Doulos Ltd

Track 3: The Definitive Guide to SystemC
The SystemC Language TRAINING DAY

® Introduction to SystemC

® Core Concepts and Syntax
[> ® Bus Modeling

® Master and slave interfaces

¢ Blocking versus non-blocking

¢ Multiports
® Odds and Ends

57

THURSDAY IS
TRAINING DAY

Example Bus Model

Multiple bus masters (modules), shared bus (channel), multiple slaves (channels)
Bus arbitration and memory mapping built into the bus

source0

proc1
Master Interfaces

Master

T T
(Bus master interface)\ 1 .
clock
Bus
-
(Bus slave interface > T equire
e
ramO ram1
Slave Slave

58

THURSDAY IS
TRAINING DAY

Master Interface Definition

class master if : virtual public sc_interface
{
public:
virtual void write(sc_uint<8> address, sc uint<l2> data,
int id) = 0;
virtual void read (sc_uint<8> address, sc uint<12> &data,
int id) = 0;
bi

59

THURSDAY IS
TRAINING DAY

Slave Interface Definition

clock |:| .
[]
T

} }

I I
ramQO ram1
Slave Slave

class slave if : virtual public sc _interface
{
public:

virtual void slave write(sc uint<8> address, sc uint<l2> data) =

~e

virtual void slave read (sc uint<8> address, sc _uint<l2> &data) =

o O O
~e

~e

virtual void get map(unsigned int &start, unsigned int &size) =

) &

< Memory map managed within bus channel)

60

Master Write and Read }'ﬁ‘ﬂﬁ?ﬁé s
source0 proc1 (Array of flags)
Master \ERIG request [0] bool

request [1] bool

(ia=0 91
\

(Array of events

E proceed[0]

proceed[1] RGNV AT

sc_event

(Runs in the context of the caller >

void Bus::write(sc _uint<8> address, sc_uint<l2> data, int id)

{

request[id] = true; // request access to the bus
wait (proceed[id]) ; // wait for permission
request[id] = false; // clear the flag

slave port[find port (address)]->slave write (address, data);

61

THURSDAY IS
TRAINING DAY

Blocking and Non-blocking Calls

An Interface Method Call runs in the context of the caller

ASI terminology:

* A blocking method may call wait
* A blocking method must be called from a thread process

* A non-blocking method must not call wait
* A non-blocking method may be called from a thread or method process
« Naming convention nb_*

62

THURSDAY IS
TRAINING DAY

Bus Controller Process

void Bus::control bus ()
{

int highest;

for (77)

{

wait(clock->posedge event());

// Pick out a master that's made a request
highest = -1;
for (int i = 0; i < n masters; i++)
if (request[i])
highest = i;
// Notify the master with the highest id
if (highest > -1)

proceed[highest] .notify () ;

63

