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® Introduction to SystemC

® Core Concepts and Syntax
[> ® Bus Modeling

® Master and slave interfaces

¢ Blocking versus non-blocking

¢ Multiports
® Odds and Ends
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Example Bus Model

Multiple bus masters (modules), shared bus (channel), multiple slaves (channels)
Bus arbitration and memory mapping built into the bus
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Master Interface Definition

class master if : virtual public sc_interface
{
public:
virtual void write(sc_uint<8> address, sc uint<l2> data,
int id) = 0;
virtual void read (sc_uint<8> address, sc uint<12> &data,
int id) = 0;
bi
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Slave Interface Definition
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class slave if : virtual public sc _interface
{
public:

virtual void slave write(sc uint<8> address, sc uint<l2> data) =

~e

virtual void slave read (sc uint<8> address, sc _uint<l2> &data) =

o O O
~e

~e

virtual void get map(unsigned int &start, unsigned int &size) =

) &

< Memory map managed within bus channel )
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Master Write and Read }'ﬁ‘ﬂﬁ?ﬁé s
source0 proc1 ( Array of flags )
Master \ERIG request [0] bool

request [1] bool

(ia=0 91
\

( Array of events

E proceed[0]

proceed[1] RGNV AT

sc_event

( Runs in the context of the caller >

void Bus::write(sc _uint<8> address, sc_uint<l2> data, int id)

{

request[id] = true; // request access to the bus
wait (proceed[id]) ; // wait for permission
request[id] = false; // clear the flag

slave port[find port (address)]->slave write (address, data);
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Blocking and Non-blocking Calls

An Interface Method Call runs in the context of the caller

ASI terminology:

* A blocking method may call wait
* A blocking method must be called from a thread process

* A non-blocking method must not call wait
* A non-blocking method may be called from a thread or method process
« Naming convention nb_*
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Bus Controller Process

void Bus::control bus ()
{

int highest;

for (77)

{

wait(clock->posedge event());

// Pick out a master that's made a request
highest = -1;
for (int i = 0; i < n masters; i++)
if (request[i])
highest = i;
// Notify the master with the highest id
if (highest > -1)

proceed[highest] .notify () ;

63




