
1

EECS 222: Embedded System Modeling
Winter 2020

Assignment 4

Posted: January 28, 2020
Due: February 5, 2020 at 6pm

Topic: Initial SLDL Model of the Canny Edge Decoder

1. Setup:

Now that we have gained some initial experience with both the SpecC and
SystemC system-level description languages in Assignment 2 and Assignment 3,
respectively, we will from now on focus on our application example introduced in
Assignment 1, namely the Canny Edge Detector. Based on the initial study of the
algorithm in the beginning, it is now time to create an initial system-level
specification model which we can then use to design our SoC target
implementation.

In this assignment, we will create the initial model specified in a system-level
description language (SLDL) which can be simulated for validation. For this, we
will need to perform some more code cleaning and remove the dynamic memory
allocation from the algorithm.

We will use the same Linux account and the same remote servers as for the
previous assignments. Start by creating a new working directory, so that you can
properly submit your deliverables in the end.

mkdir hw4
 cd hw4

You have the choice of using either SpecC or SystemC for your modeling in this
assignment. Both languages are equally capable of describing the clean SLDL
model targeted in this assignment. Also, both simulation environments are
equally capable to simulate your model in order to validate its functional
correctness.

If you choose SpecC, then use the SpecC environment installed in this directory:

/opt/sce/.

If you choose SystemC, then use the SystemC library installed in this directory:

/opt/pkg/systemc-2.3.1/.

2

Please refer to the prior assignments 2 and 3, respectively, for more detailed
setup instructions on the language of your choice.

2. Creating a clean SLDL Model for Simulation

As starting point, we will use the single-file ANSI-C source code of the Canny
Edge Detector which you have prepared in Assignment 1. To start, copy your A1
deliverable into your hw4 working directory.

Alternatively, you can copy the solution file for Assignment 1 which we provide
here:

 ~eecs222/public/cannyA1_ref.c

Step 1: Prepare clean SLDL source code without compiler warnings

Rename your starting C code file to a SpecC file canny.sc or SystemC file
canny.cpp, depending on which SLDL you choose to use. Then try compiling it
with the corresponding compiler, while enabling all warnings the compiler has to
offer (i.e. use option –ww with scc or –Wall with g++).

While we did clean up the original C code already, you may need to apply a few
more patches to the SLDL source code so that there are no errors and no
warnings issued by the SLDL compiler. Remember, this effort will pay off many
times in the end.

One note specific to the SpecC compiler scc is in order, because scc has some
known limitations in its current academic version. In particular, scc only supports
initialization of variables with expressions that are constants at compile time. For
example, if you get error #2028 “Expression not constant”, then this is likely a
situation like this:

char *infilename = NULL;

The macro NULL is not cleanly defined in some Linux headers. To resolve the
problem, the initializer should be converted to a plain zero constant, as follows:

char *infilename = 0;

You will also notice that scc is not as forgiving as gcc in terms of type
mismatches, and in particular is also more strict in proper declaration of variables
and functions before they can be used. A good rule of thumb is that your code
should be as clean as possible! This will not only make the compiler quiet, but
even more so enable your successful system design flow.

3

While it is not a requirement (no deliverable) for this assignment, it is highly
recommended that you create a suitable Makefile for building your application
model. This will greatly simplify your compilation and testing iterations.

You are done with this step when your source code compiles fine without errors
or warnings with the SLDL compiler and the generated executable properly
creates the output image with the correct edges. Be sure to compare the output
image against the one produced by Assignment 1.

Step 2: Fix the user-adjustable configuration parameters for synthesis

In order to synthesize your model later into an actual hardware chip, you need to
decide on the configuration parameters which were flexible in the initial software.
Now, those must become compile-time constants for the SoC implementation.

For instance, dynamic memory allocation (i.e. malloc(), calloc(), and
free()) is not feasible in a hardware implementation (your SoC cannot
instantiate a new memory chip at runtime!). Instead, we will use static arrays with
fixed sizes at compile time. Also, command-line parameters, such as the file
name, can only be passed to a test bench, not to the actual SoC model.

In your canny.sc or canny.cpp model, refine the source code such that the
following configuration parameters become hard-coded constants:

rows = 240
cols = 320
sigma = 0.6
tlow = 0.3
thigh = 0.8

For the file name, you can either leave it as a command-line argument
(recommended if you want to process other images later), or hard-code it also,
as follows:

infilename = “golfcart.pgm”

At the same time, we need to remove all dynamic memory allocation from the
algorithm. We suggest to start with replacing the malloc() and corresponding
free() calls (and ignore calloc() for this step). You will notice that there are
only four malloc() calls in the entire source code. Three of those are actually
never used, so you can easily remove them. Also, remove all functions from the
code that are not used (Hint: our image is a grey-scale image!).

The one remaining malloc() and the corresponding free() call should be
replaced with the use of an array with fixed size. Double-check your model so
that it still simulates correctly after replacing the malloc() and free() calls.

4

You may also want to create a backup file, before you apply the source code
modifications in the next step.

Step 3: Remove or replace all remaining dynamic memory allocation

Last but not least, remove or replace all the function calls to calloc() and all
corresponding free() calls from the source code. Again, use arrays with static
sizes instead.

Hint 1: In function make_gaussion_kernel, an array kernel is filled with
parameters. The size of this array (variable window_size) generally depends
on the configuration parameter sigma. However, since we set sigma to a
constant value in the previous step, window_size also becomes a fixed value.
Assuming that the value for SIGMA grows maximally to 4.0, you can safely
replace window_size with the constant WINSIZE=21.

Hint 2: The two functions radian_direction and angle_radians in the
original Canny implementation are useful to demonstrate the working of the
algorithm (the resulting gradient direction image can be output to a file and then
viewed). However, this functionality serves no purpose in our SoC model where
we are only interested in the final edge image. Thus, you can safely remove both
functions (and the included dynamic memory allocation) from the source code of
your model.

3. Submission:

For this assignment, submit the following deliverables:

canny.sc or canny.cpp
canny.txt

The text file should briefly describe whether or not your efforts were successful
and what (if any) problems you encountered. We will take this input into account
when grading your submission. Please be brief!

To submit your deliverables, change into the parent directory of your hw4
directory and run the ~eecs222/bin/turnin.sh script. Again, this command
will locate the current assignment files and allow you to submit them, just as
before.

Note that the submission script will ask for both the SystemC and SpecC models,
but you need to submit only the one that you have chosen for your modeling. (If
you choose to submit both, please indicate in the text file which one you want us
to use for grading!)

5

Finally, remember that you can use the turnin-script to submit your work at any
time before the deadline, but not after! Since you can submit as many times as
you want (newer submissions will overwrite older ones), it is highly
recommended to submit early and even incomplete work, in order to avoid
missing the hard deadline.

Late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~eecs222/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Dömer (EH3217, x4-9007, doemer@uci.edu)

