
1

EECS 222: Embedded System Modeling
Winter 2020

Assignment 5

Posted: February 4, 2020
Due: February 12, 2020 at 6pm

Topic: Structural test bench model of the Canny Edge Decoder

1. Setup:

This assignment is the next step in modeling our application example, the Canny
Edge Detector, as a proper system-level specification model which we can then
use to design our SoC target implementation. In this assignment, we will create a
model with a suitable top-level structural hierarchy including a test bench. We will
also convert the application from single image processing to real-time video
handling. More specifically, we will process a sequence of images extracted from
a stream of video frames.

We will use the same Linux account and the same remote servers as for the
previous assignments. Start by creating a new working directory, so that you can
properly submit your deliverables in the end.

mkdir hw5
 cd hw5

Instead of the previous golf cart image, we will from now on use a video captured
by a drone hovering over the Engineering Plaza at UCI. Then again, we will
convert the original video frames into edge images using the Canny algorithm.

The video is available in a shared directory on the server. To save disk space, do
not copy the data into your account, but create a symbolic link to it, as follows:

ln –s ~eecs222/public/video video

2

The video directory contains images extracted from the video stream, as well as
the actual movie file. The movie file is called EngPlaza.mov. Note that we do
not have a working video player available on the EECS Linux servers (for
copyright and network bandwidth reasons). However, you can easily download
the movie file to your local laptop and play it there.

From the movie file, we have extracted 20 images as single frames and stored
them as separate files in the video directory. For viewing purposes, you may
use the JPEG and bitmap formats (e.g. EngPlaza001.jpg and
EngPlaza001.bmp), but for our application we will use again the PGM
greyscale format (i.e. EngPlaza001.pgm).

As in the previous assignment, you have the choice of using either SpecC or
SystemC for your modeling. Both languages are equally capable of describing
(and viewing) the intended top-level structural hierarchy in this assignment. Also,
both simulation environments are equally capable to simulate your model in order
to validate its functional correctness.

As starting point, you can use your own SLDL model which you have created in
the previous Assignment 4. Alternatively, you may start from the provided
solution for Assignment 4 which you can copy as follows:

 cp ~eecs222/public/cannyA4_ref.sc canny.sc
 cp ~eecs222/public/cannyA4_ref.cpp canny.cpp

For your convenience, we also provide a simple Makefile for use in this
assignment which you can copy as follows:

 cp ~eecs222/public/MakefileA5SpecC ./
 cp ~eecs222/public/MakefileA5SystemC ./

Depending on whether you choose SpecC or SystemC for your modeling,
rename the corresponding file into the actual Makefile to be used by make.

A simple call to make will then compile your model into an executable, and a call
to make test will simulate the model and compare the generated edge images
against the reference images provided in the video directory.

2. Creating a test bench model with top-level structural hierarchy

Step 1: Convert the application to process a stream of video frames

Instead of the previous golf cart image (input file “golfcart.pgm” and output file
“golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm”), we will now process the
stream of video frames.

3

Adjust the model source code so that it processes 20 images in a loop. The input
images are named “video/EngPlaza001.pgm” and so on, with increasing
numbering. After processing the image, your model should output the generated
edge image as “EngPlaza001_edges.pgm”, and so on.

With these new file names in place, you should be able to simulate and check
your model with a simple command: make test

HINT: Note that you will need to change the image size from formerly 320x240
pixels to the new higher resolution of 2704x1520 pixels produced by the drone
camera. This higher image resolution naturally leads to higher memory usage of
our application. Specifically, the array variables holding the image data (which we
introduced in Assignment 4) grow large. Note that many of those variables are
local variables which get allocated on the stack. At the same time, the stack size
of a process in the Linux environment is typically limited. If so, your application
will “crash” with a segmentation fault or similar memory error.

To avoid stack overflow, you can adjust the stack space allocation in your Linux
shell. This configuration depends on the shell you are using, which you can
identify with the following command:

echo $SHELL

If you use the csh or tcsh shell, then adjust your stack size as follows:

limit stacksize 128 megabytes

On the other hand, if you use the sh or bash shell, then set your stack size like
this:

ulimit -s 128000

With this larger stack allocation in place, your application model should run
without memory problems. Run the Canny application on the prepared video
frames and validate the generated edge images by comparing them against the
reference images provided in the video directory.

Step 2: Add a test bench and platform structure to your SLDL model

The main goal of this assignment is to introduce a proper test bench and overall
structural hierarchy into our application model. In particular, we will introduce the
top-level behavior Main (SpecC) or top-level module Top (SystemC). This will
then consist of three blocks, namely Stimulus, Platform, and Monitor.

The Platform behavior/module, in turn, should contain a dedicated input unit
DataIn, an output unit DataOut, and the actual design under test DUT.

4

For easy observation of the simulation, the Stimulus block should print a
message “Stimulus sent frame” and the Monitor should print “Monitor received
frame” in every iteration. Thus, your simulation should print the following log:

Stimulus sent frame 1.
Monitor received frame 1.
Stimulus sent frame 2.
Monitor received frame 2.
Stimulus sent frame 3.
Monitor received frame 3.
...

For communication, we will introduce queue-type channels from the respective
SLDL channel library.

For SpecC modeling, we will use typed-queue channels (of size 1) to send and
receive the image data between the behaviors. For reference, please see the
simple example of a typed-queue channel in ~eecs222/public/queue.sc
which we have discussed in Lecture 5. As data type for the queue channels,
please define the following:

typedef unsigned char img[SIZE]; // image data type

For SystemC modeling on the other hand, we will use the standard first-in-first-
out channel sc_fifo<IMAGE> where IMAGE is the type of the data you need to
communicate. Since IMAGE is an array and C++ does not provide an operator for
array assignment, however, we need to wrap the array into a proper class with
overloaded operators. To simplify this technicality, copy the class IMAGE from
this provided file:

~eecs222/public/Image.cpp

Since sc_fifo channels are not well described in the presented Doulos slides,
this section summarizes the use of the standard sc_fifo channel in SystemC.
The type of this standard primitive channel is sc_fifo, so an instance of this
channel can be defined as sc_fifo ch1; To set the size of the buffer in the
channel (which defaults to 16), you pass the desired buffer size to the constructor
call, for example, ch1("ch1", size). For our example, use the value 1 here,
which will allow at most 1 image to be stored inside the channel. This will be
sufficient freedom for the model to run, while it will not introduce any extra delay
stages at the same time.

The sc_fifo channel offers a number of interface methods, but the main two
methods are void read(T &data) and void write(T &data). While it is
possible to build your own ports (using sc_port), there are predefined port
types available, namely sc_fifo_in and sc_fifo_out. When instantiated,

5

you can communicate via such ports by simply calling
PortOut.write(myData) or PortIn.read(myData).

To connect ports to channels, just bind the ports to the channel instance in the
constructor of the parent module (or in the before_end_of_elaboration
function). An example looks like this: stimulus.PortOut.bind(ch1).

For the desired top-level structural hierarchy, a total of four channel instances will
be needed, two at the test bench level (Main behavior or Top module), and two
within the Platform behavior.

Overall, your model should be structured as the following instance tree shows:

Main / Top
|------ Stimulus stimulus
|------ Platform platform
| |------ DataIn din
| |------ DUT canny
| \------ DataOut dout
\------ Monitor monitor

Specifically, the Main behavior or Top module should instantiate Stimulus,
Platform and Monitor in parallel. The Stimulus block should read the input
image from the file system and pass it into the Platform via the first queue/fifo
channel. Correspondingly, the Monitor should receive via the second channel
the generated edge image from the Platform and write it out into the output file.

In the Platform, the DataIn block should, in an endless loop, receive an input
image and pass it unmodified to the DUT. Similar, the DataOut block should,
also in an endless loop, receive an input image from the DUT and pass it on.
These two instances will be needed later during model refinement. They will
allow our test bench to remain unmodified even when later in the design flow the
communication to the DUT is implemented via detailed bus protocols.

Finally, the DUT block should contain the entire Canny algorithm source code. Its
main thread will receive an image via the input port, call the canny() function to
process it, and then send out the edge image via the output port. Since our target
SoC will never stop working (unless its power is turned off), this processing will
run in an endless loop, similar as the infinite loops in the DataIn and DataOut
blocks.

Throughout your model recoding, ensure that it still compiles, simulates, and
generates the correct output images. You are done with this assignment when
the hierarchy described above has been created and your code compiles fine
without errors or warnings.

6

In the end, your final model should not contain any global functions (except for
sc_main in SystemC), neither any global variables, nor any wait-for-time
statements. For communication, only standard library channels should be used
(no plain events or user-defined channels).

HINT: Please see also the Addendum to Assignment 5 posted next to these
assignment instructions. The addendum provides instructions to helpful tools for
SpecC and SystemC, which can visualize the model structure and connectivity.

HINT for SystemC: As indicated in the setup instructions above, stack size is an
issue that requires special attention due to the large image sizes in local
variables. For SystemC models in particular, we need to consider not only the
root thread (which derives its stack size from the surrounding shell), we must
also adjust the SystemC worker threads accordingly. Specifically, for every
SC_THREAD in your model, you need to increase its stack size. This can be
accomplished by a statement set_stack_size(128*1024*1024); which
directly follows each SC_THREAD() statement.

3. Submission:

For this assignment, submit the following deliverables:

canny.sc or canny.cpp
canny.txt

Again, the text file should briefly mention whether or not your efforts were
successful and what (if any) problems you encountered. Please be brief!

To submit these files, change into the parent directory of your hw5 directory and
run the ~eecs222/bin/turnin.sh script. As before, note that the submission
script will ask for both the SystemC and SpecC models, but you need to submit
only the one that you have chosen for your modeling.

Finally, remember that you can use the turnin-script to submit your work at any
time before the deadline, but not after! Since you can submit as many times as
you want (newer submissions will overwrite older ones), it is highly
recommended to submit early and even incomplete work, in order to avoid
missing the hard deadline. Late submissions will not be considered!

To double-check that your submitted files have been received, you can run the
~eecs222/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Dömer (EH3217, x4-9007, doemer@uci.edu)

