
1

EECS 222: Embedded System Modeling
Winter 2020

Assignment 6 (shortened)

Posted: February 11, 2020
Due: February 19, 2020 at 6pm

Topic: Hierarchical DUT model of the Canny Edge Decoder

1. Setup:

This assignment continues the modeling of our application example, the Canny
Edge Detector, as a proper system-level specification model which we can then
use to design our SoC target implementation. Now we will refine the previous
model with a suitable structural hierarchy inside the design-under-test (DUT)
block.

Again, we will use the same setup as for the previous assignments. Start by
creating a new working directory, so that you can properly submit your
deliverables in the end.

mkdir hw6
 cd hw6

For functional validation, create again a symbolic link to the video frames, as
follows:

ln –s ~eecs222/public/video video

As in the previous assignments, you have again the choice of using either SpecC
or SystemC for your modeling and estimation. Both SLDLs are equally suitable
for this assignment.

As starting point, you can use your own SLDL model which you have created in
the previous Assignment 5. Alternatively, you may start from the provided
solution for Assignment 5 which you can copy as follows:

 cp ~eecs222/public/cannyA5_ref.sc canny.sc
 cp ~eecs222/public/cannyA5_ref.cpp canny.cpp

You may also want to reuse the simple Makefile from the previous assignment:

 cp ~eecs222/public/MakefileA5SpecC ./
 cp ~eecs222/public/MakefileA5SystemC ./

2

Again, depending on whether you choose SpecC or SystemC for your modeling,
rename the corresponding file into the actual Makefile to be used by make.

2. Refining the model with structural hierarchy in the DUT

Step 1: Create an additional level of hierarchy in the DUT

The original canny function consists of a sequence of function calls to five
functions, namely gaussian_smooth, derivative_x_y, magnitude_x_y,
non_max_supp, and apply_hysteresis. In the previous model, these are all
local methods in the DUT. In contrast, we will now wrap those into separate
blocks (child behaviors or modules, respectively) by themselves.

The expected instance tree of the Platform block should then look like this:

Platform platform
|------ DataIn din
|------ DUT canny
| |------ Gaussian_Smooth gaussian_smooth
| |------ Derivative_X_Y derivative_x_y
| |------ Magnitude_X_Y magnitude_x_y
| |------ Non_Max_Supp non_max_supp
| \------ Apply_Hysteresis apply_hysteresis
\------ DataOut dout

If you are using SpecC, then the Canny behavior should be a sequential
composition of its children. For communication, the child behaviors should be
connected by ports directly mapped to connecting variables (which will be of type
IMAGE or similar). Be sure to use only port directions in or out, not inout
(inout ports would lead to problems later in the design process).

If you are using SystemC, then the Canny module should be a concurrent
composition of its children (where each child will have its own thread). For
communication, the child modules should be connected by ports mapped to
connecting channels (which will be of sc_fifo<IMAGE> or similar type, and
should have a buffer size of 1 element). Be sure to use suitable ports with
directions sc_fifo_in or sc_fifo_out. Also, since some intermediate
images in the Canny algorithm are generated by one function and then used by
multiple others, you may need to duplicate some channel instances.

After this level of hierarchy has been added, you should compile and simulate
your model to ensure functional correctness.

3

Step 2: Visualize the structural hierarchy of your model

For both SpecC and SystemC, we have tools available that can analyze and
visualize the hierarchical structure and connectivity of the model. These tools can
generate a simple ASCII-chart of the instance tree or a graphical image of the
model structure and port mapping.

For SpecC, use the sir_tree and scchart tools provided by the System-on-
Chip Environment (SCE), as follows:

source /opt/sce/bin/setup.csh
scc canny -sc2sir -vv
sir_tree –blt canny.sir
scchart canny.sir

For SystemC, use the tree and visual tools provided by the Recoding
Infrastructure for SystemC (RISC), as follows:

source /opt/pkg/risc_v0.5.0/bin/setup.csh
tree canny.cpp
visual canny.cpp

As deliverable for this assignment, submit the generated hierarchy tree of your
model as a text file. For SpecC, use sir_tree, as follows:

sir_tree –blt canny.sir > canny.tree

For SystemC, use tree, as follows:

tree canny.cpp > canny.tree

Note that you inspect the canny.tree file with your regular text editor.

3. Submission:

For this assignment, submit the following deliverables:

canny.sc or canny.cpp
canny.tree

To submit these files, change into the parent directory of your hw6 directory and
run the ~eecs222/bin/turnin.sh script. As before, note that the submission
script will ask for both the SystemC and SpecC models, but you need to submit
only the one that you have chosen for your modeling.

Again, be sure to submit on time. Late submissions will not be considered!

4

To double-check that your submitted files have been received, you can run the
~eecs222/bin/listfiles.py script.

For any technical questions, please use the course message board.

--
Rainer Dömer (EH3217, x4-9007, doemer@uci.edu)

