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EECS 222: Embedded System Modeling 
Winter 2020 

 
Assignment 8 

 
Posted: February 18, 2020 
Due: February 26, 2020 at 6pm 
 
Topic: Pipelining and parallelization of the Canny Edge Decoder 
 
 
1. Setup: 
 
This assignment continues the modeling of our application example, the Canny 
Edge Detector. This time we will refine our model with back-annotated timing and 
pipeline and parallelize the components in the design-under-test (DUT) block. 
Over the course of the 6 steps outlined below, our design model will be refined 
from an untimed model into one with estimated delays where the simulation 
allows us to observe the improved performance due to pipelining and 
parallelization. 

Again, we will use the same setup as for the previous assignments. Start by 
creating a new working directory with a link to the video files. 

mkdir hw8 
cd hw8 
ln –s ~eecs222/public/video video 

As in the previous assignments, you have again the choice of using either SpecC 
or SystemC for your modeling and estimation. Both SLDLs are suitable for this 
assignment, but several steps are different, as outlined in detail below. 

As starting point, we will use a reference solution for Assignment 6. Note that in 
addition to the changes described in the shortened Assignment 6, this model also 
contains four children modules which have been separately instantiated in the 
Gaussian_Smooth module, namely Receive_Image, Gaussian_Kernel, 
BlurX, and BlurY. 

The instance tree of the DUT module looks like this: 

DUT canny 
|------ Gaussian_Smooth gaussian_smooth 
|       |------ Receive_Image receive 
|       |------ Gaussian_Kernel gauss 
|       |------ BlurX blurX 
|       \------ BlurY blurY 
|------ Derivative_X_Y derivative_x_y 
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|------ Magnitude_X_Y magnitude_x_y 
|------ Non_Max_Supp non_max_supp 
\------ Apply_Hysteresis apply_hysteresis 

You can copy the prepared model as follows: 

 cp ~eecs222/public/cannyA6_ref.sc canny.sc 
 cp ~eecs222/public/cannyA6_ref.cpp canny.cpp 

Note that the models for SystemC and SpecC differ here in their behavioral 
composition. The SpecC model uses sequential composition and port-mapped 
variables, while the SystemC model uses concurrent composition and port-
mapped sc_fifo channels (SystemC). 

You may also want to reuse the Makefile from the previous assignments: 

 cp ~eecs222/public/MakefileA5SpecC ./ 
 cp ~eecs222/public/MakefileA5SystemC ./ 

As before, depending on whether you choose SpecC or SystemC, rename the 
corresponding file into the actual Makefile to be used by make. 

 

2. Pipelining and Parallelization of the Canny Model 

In order to observe the performance of the application in the simulator, we need 
to insert statements to monitor the simulated time in the test bench (Step 1) and 
then instrument the model with estimated delays in the DUT (Step 2). 

Step 1: Instrument the model with logging of simulated time and frame delay 

When we are interested in the latency and frame delay, we need to measure the 
time it takes to process a frame. To do that, we let the Stimulus block note the 
start time of processing each frame and communicate that to the Monitor which, 
in turn, can then compute and display the delay for each frame. 

For the communication from Stimulus to Monitor, instantiate a FIFO channel with 
sufficient (!) buffer space for the frame start times. The channel (of type 
sc_time_queue in SpecC, or sc_fifo<sc_time> in SystemC, respectively) 
should pass time stamps from the Stimulus to the Monitor. In the Stimulus, take 
the current simulated time right after sending out the frame image, print it to the 
screen for observation, and also send it to the Monitor through the new channel. 
In the Monitor, take the difference between the current simulated time and the 
time the frame was sent, and display it on the screen for each frame. 

The following log illustrates the expected screen output after this step (your 
results may vary in ordering): 
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        0: Stimulus sent frame  1. 
        0: Stimulus sent frame  2. 
        0: Monitor received frame  1 with     0 ms delay. 
        0: Stimulus sent frame  3. 
        0: Monitor received frame  2 with     0 ms delay. 
        0: Stimulus sent frame  4. 
        0: Monitor received frame  3 with     0 ms delay. 
        [...] 
        0: Stimulus sent frame 20. 
        0: Monitor received frame 19 with     0 ms delay. 
        0: Monitor received frame 20 with     0 ms delay. 
        0: Monitor exits simulation. 

As shown above, it is recommended to prefix each log line with the current 
simulated time as this significantly simplifies understanding and any needed 
debugging. Also shown above is the choice of milli-seconds (noted as ms) as the 
default time unit which fits well for our application. 

You will want to keep a copy of your model at this stage, say cannyA8_step1, 
so that you can compare the observed timing among the different models in this 
assignment at the end. 

Step 2: Back-annotate estimated timing in the DUT components 

In the previous Assignment 7, we obtained some rough timing estimates for the 
blocks in the DUT. However, those measurements were performed on the server 
and do not reflect the performance of an embedded platform. So, we will use 
different measurements here instead. 

In particular, we will use from now on timing estimates obtained for the Canny 
application on a Raspberry Pi 3 prototyping platform with a quad-core ARM-
based processor. This timing has been measured using the same approach as 
step 2 in Assignment 7, except is was performed on a prototyping board. 

Specifically, we will assume the following delays for the DUT components: 

Receive_Image    0 ms 
Make_Kernel    0 ms 
BlurX 1880 ms 
BlurY 2010 ms 
Derivative_X_Y  530 ms 
Magnitude_X_Y  910 ms 
Non_Max_Supp  960 ms 
Apply_Hysteresis  740 ms 

Back-annotate these delays into your model by inserting suitable wait-for-time 
statements at the beginning of the main method of each DUT component. 
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After inserting the wait-for-time statements, run your model and observe the 
simulated time and frame delays reported by the log. Again, you want to keep a 
copy of your model at this stage, say cannyA8_step2, so that you can compare 
this observed timing with the following improved models. 

Step 3: Improve the test bench to also log the frame throughput 

As discussed in the lectures, the frame delay measured in Step 1 is helpful, but 
we are mostly interested in observing the performance of our model by means of 
its throughput, i.e. the frames per second (FPS) coming out of the video 
processing pipeline. To measure this, we will now extend the timing log produced 
by the test bench in Step 1. 

Specifically, we let the Monitor module measure and report the frame throughput 
upon receiving a new frame. The extended log should look similar to the 
following at the end (however, depending on your specific model, your observed 
values may vary): 

   [...] 
   133570: Monitor received frame 19 with    28120 ms delay. 
   133570:   7.030 seconds after previous frame,  0.142 FPS. 
   140600: Monitor received frame 20 with    28120 ms delay. 
   140600:   7.030 seconds after previous frame,  0.142 FPS. 
   140600: Monitor exits simulation. 

The frame throughput is observed in the Monitor module by measuring the arrival 
time of two consecutive frames and calculating the difference of the two 
timestamps. Converted to seconds, the reciprocal value is the desired FPS result. 

Adjust your model to print the extra log line for each received frame. Again, keep 
a copy of the model at this stage, say cannyA8_step3, so that you can 
compare the observed timing with the following improvements. 

Step 4: Pipeline the DUT into stages for each component 

As discussed in the lectures, we will use pipelining as the overall technique to 
improve the throughput of the DUT. 

If you are using SpecC for your modeling and communicate via regular variables, 
pipelining can be applied by simply replacing the endless loop in the Canny 
behavior (i.e. the fsm construct) with an infinite pipeline (i.e. a pipe construct). 
Then, to allow for the necessary buffering of the data between the pipeline 
stages, add piped qualifiers to any port-mapped variables between the stages. 
Note that you will need to duplicate those variables (and ports) whose values are 
needed in multiple following stages. 



5 
 

If you are using SpecC and your DUT components communicate via queue 
channels, then no piped qualifiers are needed. You can create pipeline behavior 
either by using a pipe construct, or by a par construct with endless loops 
around the stages. 

If you are using SystemC and your DUT components are already communicating 
via sc_fifo channels, then there is nothing to do in this step. Your model is 
already pipelined! 

As a result of this step, your model should contain 5 pipeline stages and, 
because of this, execute significantly faster (in simulated time!) than before. 

Again, you want to keep a copy of your model at this stage, say 
cannyA8_step4. 

Step 5: Integrate the Gaussian Smooth components into the pipeline stages 

To further improve the performance of your design, we will also decompose the 
first pipeline stage, namely the Gaussian Smooth block, and create two 
additional pipeline stages for the BlurX and BlurY blocks. In other words, we 
move the BlurX and BlurY blocks from the Gaussian_Smooth parent one 
level up into the DUT. Here, be sure to properly arrange the port connectivity and 
add any needed buffering between the new pipeline stages. 

The expected instance tree of the DUT block should look like this: 

DUT 
|------ Gaussian_Smooth gaussian_smooth 
|       |------ Receive_Image receive 
|       \------ Gaussian_Kernel gauss 
|------ BlurX blurX 
|------ BlurY blurY 
|------ Derivative_X_Y derivative_x_y 
|------ Magnitude_X_Y magnitude_x_y 
|------ Non_Max_Supp non_max_supp 
\------ Apply_Hysteresis apply_hysteresis 

As a result of this step, your model should now contain a total of 7 pipeline 
stages and, once again, execute significantly faster (in simulated time) than 
before. (HINT: For a SystemC model, you might not see any improvement in the 
throughput, because the two pipeline stages in the Gaussian Smooth block 
already behaved as part of the overall pipeline in the previous step.) 

As discussed in the lectures, the throughput for a model with overall pipeline 
structure is determined by the longest stage delay. So at this point, your 
throughput should depend on the BlurY block because that incurs the longest 
delay. 
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Again, keep a copy of your model at this stage, say cannyA8_step5. 

Step 6: Slice the BlurX and BlurY blocks into parallel components 

Finally we will remedy the performance bottleneck in the BlurX and BlurY 
components by parallelization. As discussed in the lectures, both blocks are 
straightforward to optimize by parallelizing the operations in the rows and 
columns, respectively. While we could technically operate on every single row or 
column in parallel (as a real graphics processing unit (GPU) would do it), we will 
limit our efforts to 8 parallel slices for this assignment. 

Specifically, convert the existing BlurX and BlurY blocks into BlurX_Slice 
and BlurY_Slice components that only operate on a one-eighth slice of the 
image. For example, the first BlurX_Slice instance sliceX1 will process the 
rows from (ROWS/8)*0 through (ROWS/8)*1-1 and sliceX2 will process the 
rows from (ROWS/8)*1 through (ROWS/8)*2-1 and so on. Be sure to adjust 
the back-annotated delays by the expected speedup of 8x. 

Then, instantiate 8 parallel instances of these slice processors in replacements of 
the previous BlurX and BlurY blocks. In the end, the expected hierarchy of the 
DUT should look like this: 

DUT 
|------ Gaussian_Smooth gaussian_smooth 
|       |------ Receive_Image receive 
|       \------ Gaussian_Kernel gauss 
|------ BlurX blurX 
|       |------ BlurX_Slice sliceX1 
|       |------ BlurX_Slice sliceX2 
|       |------ BlurX_Slice sliceX3 
|       |------ BlurX_Slice sliceX4 
|       |------ BlurX_Slice sliceX5 
|       |------ BlurX_Slice sliceX6 
|       |------ BlurX_Slice sliceX7 
|       \------ BlurX_Slice sliceX8 
|------ BlurY blurY 
|       |------ BlurY_Slice sliceY1 
|       |------ BlurY_Slice sliceY2 
|       |------ BlurY_Slice sliceY3 
|       |       [...] 
|       |------ BlurY_Slice sliceY7 
|       \------ BlurY_Slice sliceY8 
|------ Derivative_X_Y derivative_x_y 
|------ Magnitude_X_Y magnitude_x_y 
|------ Non_Max_Supp non_max_supp 
\------ Apply_Hysteresis apply_hysteresis 
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Note that we will use a simplified method of communication between the slices. 
Instead of queues or FIFO channels, we can use the image arrays in BlurX and 
BlurY as shared member variables among the slices. 

HINT for SpecC: Rename the existing behavior BlurX into BlurX_Slice and 
only add two variable input ports, say rowStart and rowEnd. Then create a 
new behavior BlurX (with the same ports as the original BlurX) and instantiate 
8 instances of BlurX_Slice in it where their ports are connected straight to the 
parent BlurX and the new ports rowStart and rowEnd are initialized with the 
bounds of their assigned slice. A simple par{ } construct over the 8 slice 
instances will then start them in parallel, wait for their completion, and complete 
the parent execution. 

HINT for SystemC: There is no need to actually create an additional module 
type. Simply create 8 parallel SC_THREADs inside the BlurX module. Each of 
those slice threads will need its own method that performs the blurring the same 
way as before, except only for its assigned slice from rowStart to rowEnd. 
Then, to ensure the parallel starting and ending of those slice threads, the main 
thread of BlurX reads the incoming frame data, notifies the slice threads via a 
start event, and waits for all of them to finish their slice calculation. To wait for 
all the 8 slice threads, the main thread needs to wait for an AND-combination of 
8 events that are notified by the slice threads. 

Apply these hints above also for the BlurY behavior or module, respectively. 

As a result of this assignment, your final model cannyA8_step6 should, once 
again, execute significantly faster (in simulated time) than in the previous step. 

Note the timing of each model and report it in your text file submission. 
Specifically, we are interested in the total simulated time and the longest delay 
for processing a frame for each of the 6 steps of model refinement. 

Thus, report the observed timings in the following table: 

Model          Frame Delay    Throughput   Total time 
CannyA8_step1  ... ms                       ... ms 
CannyA8_step2  ... ms                       ... ms 
CannyA8_step3  ... ms          ... FPS      ... ms 
CannyA8_step4  ... ms          ... FPS      ... ms 
CannyA8_step5  ... ms          ... FPS      ... ms 
CannyA8_step6  ... ms          ... FPS      ... ms 
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3. Submission: 

For this assignment, submit the following deliverables: 

canny.sc or canny.cpp 
canny.txt 

As before, the text file should briefly mention whether or not your efforts were 
successful and what (if any) problems you encountered. In addition, include the 
observed timing results in the above table and a brief explanation. 

To submit these files, change into the parent directory of your hw8 directory and 
run the ~eecs222/bin/turnin.sh script. As before, note that the submission 
script will ask for both the SystemC and SpecC models, but you need to submit 
only the one that you have chosen for your modeling. 

Again, be sure to submit on time. Late submissions will not be considered! 

To double-check that your submitted files have been received, you can run the 
~eecs222/bin/listfiles.py script. 

For any technical questions, please use the course message board. 

 

-- 
Rainer Dömer (EH3217, x4-9007, doemer@uci.edu) 
 


