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EECS 222: Embedded System Modeling 
Winter 2020 

 
Assignment 9 

 
Posted: February 25, 2020 
Due: March 4, 2020 at 6pm 
 
Topic: Throughput optimization of the Canny Edge Decoder 
 
 
1. Setup: 
 
This assignment is the final chapter in the modeling of our application example, 
the Canny Edge Detector, as a system-level specification model suitable for SoC 
implementation. Here, we will optimize the pipelined DUT model obtained in the 
previous assignment so that the pipeline stages are optimized, better balanced, 
and therefore the throughput of the design is improved. 

Again, we will use the same setup as for the previous assignments. Start by 
creating a new working directory with a link to the video files. 

mkdir hw9 
cd hw9 
ln –s ~eecs222/public/video video 

As before, you have the choice of using either SpecC or SystemC for your 
modeling. 

As starting point, you can use your own SLDL model which you have created in 
the previous Assignment 7 and Assignment 8. Alternatively, you may start from 
the provided solution files for Assignment 7 and Assignment 8 which you can 
copy as follows: 

cp ~eecs222/public/cannyA7_ref.cc cannyA9_step1.cc 
cp ~eecs222/public/cannyA8_ref.sc cannyA9_step2.sc 
cp ~eecs222/public/cannyA8_ref.cpp cannyA9_step2.cpp 

You may also want to reuse and extend the Makefile from the previous 
assignments: 

 cp ~eecs222/public/MakefileA5SpecC ./ 
 cp ~eecs222/public/MakefileA5SystemC ./ 

Again, depending on whether you design in SpecC or SystemC, rename the 
corresponding file into the actual Makefile to be used by make. 
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Finally, we will use again the ImageDiff tool in this assignment which you can 
access via a symbolic link: 

 ln -s ~eecs222/public/ImageDiff ImageDiff 

We will use this tool for comparing the generated images instead of the 
previously used Linux diff tool, as outlined in the instructions below. 

 

2. Throughput optimization of the Canny Edge Decoder model 

Step 1: Obtain optimized timing delays by utilizing compiler optimizations 

In Assignment 7 Step 2, we measured the application performance on the 
department server with the Linux clock() API. However, we did not take any 
compiler optimizations into account. 

Compiler optimizations are an easy choice to improve software program 
performance since the GNU compiler offers many optimization options for 
generating faster executables. So we run the compiler anew with optimizations 
enabled, and then measure the timing again. 

A general-purpose optimization flag for the GNU compiler is –O2 which we will 
use here. Other possible options include –O3 and many other specific 
optimization flags. While you are welcome to test those as well, we will use the 
general-purpose –O2 option in this step. 

So, compile your model with compiler optimizations turned on and execute it 
again. Then compare the measured timing against the measurements from 
Assignment 7 and calculate the obtained speedup in a table, as follows: 

T1  =  ...ms / ...ms = ... 
T2  =  ...ms / ...ms = ... 
T3  =  ...ms / ...ms = ... 
T4  =  ...ms / ...ms = ... 
T5  =  ...ms / ...ms = ... 
T6  =  ...ms / ...ms = ... 
T7  =  ...ms / ...ms = ... 
Tot =  ...ms / ...ms = ... 
 

Submit the filled table in your text file canny.txt. Keep a copy of your model at 
this point and name it cannyA9_step1. 

Step 2: Back-annotate the optimized timing for the DUT components 

The compiler optimizations applied and measured in Step 1 affect the DUT 
components differently and result in varying speedups. For simplicity (and easier 
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grading) purposes, however, we will assume now that the speedup is 2.5 on 
average and is also achieved on the prototyping board. 

Thus, adjust the timing delays which we back-annotated into your model in 
Assignment 8 Step 2 accordingly. Specifically, we assume here that each DUT 
component will incur a speedup of 2.5x due to compiler optimizations. 

After adjusting the wait-for-time statements, run your model and observe the 
simulation time and frame delays reported by the log. Again, you want to keep a 
copy of your model at this stage, say cannyA9_step2, so that you can compare 
this observed timing with the other models. 

Step 3: Replace the Raspberry Pi 3 measurements with Raspberry Pi 4 

As an example of optimization by use of “better” hardware, we will now assume 
that we switch from the Raspberry Pi 3 prototyping board to the next generation, 
Raspberry Pi 4, which is significantly faster than before. 

Specifically, we have measured the following delays for the DUT components on 
a new RPi 4 board (using the same approach as described in Assignment 7): 

Receive_Image    0 ms 
Make_Kernel    0 ms 
BlurX  440 ms 
BlurY  625 ms 
Derivative_X_Y  260 ms 
Magnitude_X_Y  170 ms 
Non_Max_Supp  320 ms 
Apply_Hysteresis  295 ms 

Back-annotate these new delays into your model by replacing the previous 
delays for each DUT component. Note that can assume that the 2.5x speedup 
due to compiler optimizations (Step 2 above) still applies also for these new base 
measurements. 

Again, you want to keep a copy of your model at this stage, say 
cannyA9_step3, so that you can compare this observed timing with the other 
models. 

Step 4: Replace floating-point arithmetic with fixed-point calculations (NMS only) 

In order to further improve the throughput of our video processing pipeline, we 
need to balance the load of the pipeline stages. Specifically, we need to improve 
the stage with the longest stage delay. 

In the following, we will experiment with fixed-point arithmetic that can often 
improve execution speed when floating-point operations are too slow. In other 
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words, we want to replace existing floating-point calculations by faster and 
cheaper fixed-point arithmetic with an acceptable loss of accuracy. 

In our model in particular, the Non_Max_Supp behavior/module is now the 
bottleneck in the pipeline that we want to speed-up. Also, the Non_Max_Supp 
module is a good target where we can easily apply fixed-point optimization. 
(Generally, this technique can be applied also to other components, but we will 
limit our efforts to only the Non_Max_Supp block in this assignment.) 

Find the non_max_supp function in the source code of your model. Identify 
those variables and statements which use floating-point (i.e. float type) 
operations. There are only 4 variables defined with floating-point type. Change 
their type to integer (int). 

Next, we need to adjust all calculations that involve these variables. In particular, 
we need to add appropriate shift-operations so that the integer variables can 
represent fixed-point values within appropriate ranges. Since the details of such 
arithmetic transformations are beyond the scope of this course, we provide 
specific instructions here. 

Locate the following two lines of code: 

xperp = -(gx = *gxptr)/((float)m00); 
yperp = (gy = *gyptr)/((float)m00); 

Comment out those lines and insert the following statements as replacement: 

gx = *gxptr; 
gy = *gyptr; 
xperp = -(gx<<16)/m00; 
yperp = (gy<<16)/m00; 

To ensure functional correctness, compile and simulate your model. However, 
don’t be disappointed if your make test fails! Note that the current Makefile 
compares the generated frames against the reference images and expects exact 
matches. Our arithmetic transformation, however, is not guaranteed to be exact. 
It is only an approximation! 

In order to determine whether or not fixed-point arithmetic is acceptable for our 
application, we need to compare the image quality. You can do this by looking at 
them (e.g. use eog to display them on your screen), or better by using the 
provided ImageDiff tool. For example, use ImageDiff as follows: 

./ImageDiff Frame.pgm video/Frame.pgm diff.pgm 

You may want to adjust your Makefile so that the previously used Linux diff 
command is replaced with the ImageDiff tool instead. 
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Decide for yourself whether or not you find the changes incurred due to the use 
of fixed-point arithmetic acceptable for our edge detection application. 

Generally, the cost of inaccurate images comes with the benefit of improved 
execution speed. Here, we will assume that the NMS block, which took 320ms to 
compute (before compiler optimizations), now only takes 290ms (without 
compiler optimizations). Apply this improved timing to your model (and assume 
the same 2.5x speedup due to compiler optimizations as in Step 2). Recompile 
and execute the model again to observe the improved performance in the 
simulation log. 

Decide for yourself whether or not this change is worth it for our real-time video 
goal and explain your choice in the canny.txt text file. Also, report the 
observed timings in your canny.txt file in the following table: 

Model         Frame Delay    Throughput   Total time 
cannyA9_step2   ... ms        ... FPS      ... ms 
cannyA9_step3   ... ms        ... FPS      ... ms 
cannyA9_step4   ... ms        ... FPS      ... ms 

 

3. Submission: 

For this assignment, submit the following deliverables: 

canny.sc or canny.cpp 
canny.txt 

To submit these files, change into the parent directory of your hw9 directory and 
run the ~eecs222/bin/turnin.sh script. As before, note that the submission 
script will ask for both the SystemC and SpecC models, but you need to submit 
only the one that you have chosen for your modeling. 

Again, be sure to submit on time. Late submissions will not be considered! 

To double-check that your submitted files have been received, you can run the 
~eecs222/bin/listfiles.py script. 

For any technical questions, please use the course message board. 

 

-- 
Rainer Dömer (EH3217, x4-9007, doemer@uci.edu) 
 


