
EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 2

Lecture 1: Overview

• Course Overview
– Context, content

• Course Administration
– Schedule, assignments

– Academic honesty

• Introduction to Embedded System Design
– Embedded computer systems

– Levels of abstraction

– Top-down system design flow

• Project Assignment 1
– Introduction to application example

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 3

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 4

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

Computation models for embedded systems.
System-level specification and description languages.
Concepts, requirements, examples.
Embedded system models at different levels of abstraction.
Modeling of test benches, design under test, IP components.
Discrete event simulation, semantics, and algorithms.

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 5

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design
Embedded system design flow and methodology.
Design space exploration. Co-design of hardware and software,
embedded architecture and network exploration and synthesis.
System software/hardware interface generation.
Real-time constraints, specification-to-architecture mapping,
design tools and methodologies.

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 6

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software
Embedded system software concepts, requirements, examples,
for engineering application such as multi-media and automotive.
Software generation methodology.
Algorithmic specification, design constraints.
Embedded operating systems.
Static, dynamic, real-time scheduling.
Input/output, interrupt handling.
Code generation, compilation, instruction set simulation.

4. EECS 227: Cyber-Physical System Design

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 7

Course Context

• Graduate courses on Embedded System Design
1. EECS 222: Embedded System Modeling

2. EECS 225: Embedded System Design

3. EECS 226: Embedded System Software

4. EECS 227: Cyber-Physical System Design
Model-based design of cyber-physical systems including, e.g.,
plant, sensing, control, actuation, embedded hardware/software,
communication, real-time analysis, various levels of simulation
(MILS, SILS, HILS), tools and methodologies for automatic
synthesis, and application from various interdisciplinary domains.

EECS 222 Course Content

1. Embedded system concepts, abstraction levels,
computational models

2. The SpecC system-level description language

3. The SystemC system-level description language

4. Embedded system specification,
modeling guidelines

5. Validation, execution and simulation semantics

6. Top-down design methodology

7. System-level architecture modeling

8. Embedded system communication modeling

9. Cycle-accurate modeling, implementation

10.UML and other system-level description languages

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 8

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 9

Course Administration

• Course web pages at
http://newport.eecs.uci.edu/
~doemer/w20_eecs222/
– Instructor information

– Course description and policies

– Objectives and outcomes

– Contents and schedule

– Resources and communication

– Assignments

Academic Honesty

• Honesty and Integrity are Required
– See UCI Office of Academic Integrity & Student Conduct

– See course policy on course web site

• Plagiarism
– Theft of intellectual property

– Taking someone else's work or ideas
and passing them off as one's own

 Do not copy code!

• Violations will be reported
– Academic misconduct report to UCI Office of AISC

• Interview, written report, AISC staff meeting, decision, …

– Possible sanctions
• Warning, probation, suspension, dismissal

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 10

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 6

Academic Honesty

• Example (F’16):
 Moss:

Automatic system
for determining
similarity
of program code

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 11

Academic Honesty

• Example (S’17): Text transformation
– Technical Report 1:

– Technical Report 2:

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 12

1 INTRODUCTION
With complexities of Systems-on-Chip rising almost daily, the design community has
been searching for new methodology that can handle given complexities with
increased productivity and less time. The modeling and design of embedded systems
can be performed at several abstraction levels. The highest level of abstraction is the
System level, where the functionality is described using “system-level specification”
(in the case of VLSI design, description languages like VHDL or Verilog) and the
architecture is seen as building blocks consisting of processors, memories, etc. …

INTRODUCTION:
SOC challenges are changing day by day, the plan group has been hunting down new
philosophy that can deal with given complexities with expanded efficiency and less
time. The displaying and plan of implanted frameworks can be performed at a few
reflection levels. The most abnormal amount of reflection is the System level, where
the usefulness is portrayed utilizing "framework level determination" (on account of
VLSI plan, depiction dialects like VHDL or Verilog) and the design is viewed as
building pieces comprising of processors, recollections, and so on…

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 13

Embedded System Design

• Embedded Computer Systems

• System-on-Chip (SoC) Design

• Abstraction Levels

• Embedded System Design Flow

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 14

Embedded Computer Systems

• Computers are ubiquitous, omnipresent…

• System-on-Chip (SoC) Design:
Design of complex embedded systems
on a single chip

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 15

Embedded Systems

• System embedded into cyber-physical system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– Pervasive in many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Most computers are embedded systems!

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

Source:
Motorola Inc

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 16

Embedded System Design

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 9

Source: Xilinx

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 17

Embedded System Design

• Design Advantages
– Application known at design time

– Environment known at design time

– Allows for customized / optimized solution
• Improved performance

• More functionality

• At lower power

• Custom Platform, SW and HW components
– Multi-Processor System-on-Chip (MPSoC),

• Complete embedded system integrated on a chip

– General-purpose and application-specific processors

– Application Specific Integrated Circuit (ASIC)

– Field Programmable Gate Array (FPGA)

– Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 18

Design Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 10

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 19

Design Complexity Challenge

• Productivity Gaps
– Hardware productivity gap

• Capacities in chip size outpace capabilities in chip design

• Moore’s law: chip capacity doubles every 18 months

• HW design productivity estimated at 1.6x over 18 months

– Software productivity gap
• Growth of SW productivity estimated at 2x every 5 years

• Needs in embedded SW estimated at 2x over 10 months

– System productivity gap
• HW gap + SW gap

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 20

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 11

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 21

System level
1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 22

Abstraction Levels

TimingLow abstraction

High abstraction

Implementation Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 12

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 23

Top-Down System Design Flow

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints

EECS 222 Project

• Application Example: Canny Edge Detector
– Embedded system model for image processing:

Automatic edge detection in a digital camera

– Application source and documentation:
• John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI, 1986.

• http://en.wikipedia.org/wiki/Canny_edge_detector

• ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 24

golfcart.pgm golfcart.pgm_s_0.60_l_0.30_h_0.80.pgm

EECS222: Embedded System Modeling Lecture 1

(c) 2020 R. Doemer 13

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 25

EECS 222 Project

• Administration
– EECS Department Linux Servers

• crystalcove.eecs.uci.edu, and others

• Linux environment (CentOS 6.10)
• Access via secure shell protocol (SSH)

– Accounts
• User ID same as your UCInetID

• Password same as your EEE password

– Login and make yourself familiar with
• Command-line tools and GUI tools (which need X client)

• Text editing and C/C++ programming

• Image processing tools

Project Assignment 1

• Task: Introduction to Application Example
– Canny Edge Detector

– Algorithm for edge detection in digital images

• Steps
1. Setup your Linux programming environment

2. Download, adjust, and compile the application C code
with the GNU C compiler (gcc)

3. Study the application

4. Fix a bug and clean-up the source code

• Deliverables
– Source code and text file: canny.c, canny.txt

• Due
– Wednesday, January 15, 2020, 6pm

EECS222: Embedded System Modeling, Lecture 1 (c) 2020 R. Doemer 26

