
EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 12

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 2

Lecture 12: Overview

• Top-Down Embedded Design Flow
– Specification Modeling Guidelines

• System-on-Chip Environment (SCE)
– Design Example: GSM Vocoder

– Profiling and performance estimation

 Interactive demonstration

• Homework Assignment 7
– Performance estimation of the Canny Edge Detector

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 3

Top-Down Embedded Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 4

Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure / architecture
– Pure behavioral hierarchy

• Untimed
– Execution in zero (logical) time

– Causal ordering

– Synchronization

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Source: A. Gerstlauer)

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 5

Specification Modeling Guidelines

• Example: Guidelines for SoC Environment (SCE)
– Clean behavioral hierarchy

• hierarchical behaviors:
no code other than par, pipe, seq, fsm, and try-trap statements

• leaf behaviors:
Pure ANSI-C code (no SpecC constructs)

– Clean communication
• point-to-point communication via standard channels

• ports of plain type or interface type, no pointers

• port maps to local variables or ports only

• Detailed rules for SoC Environment
– CECS Technical Report:

“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Dömer, et al.
• /opt/sce-20100908/doc/SpecRM.pdf

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 6

Specification Modeling Guidelines

• Converting C reference code to SpecC
– Major functions become behaviors
– Function call tree becomes behavioral hierarchy

• Function call becomes behavior instance call
• Sequential statements become leaf behaviors
• Control flow becomes FSM

– Conditional statements: if, if-else, switch
– Loops: while, for, do-while

– Explicitly specify potential parallelism
– Explicitly specify communication

• Use standard channels, avoid shared variables
• No global variables
• Only local variables in behaviors and functions/methods

– Data types
• Avoid dynamic memory allocation
• Avoid pointers (arrays are preferred)
• Use explicit data types if suitable (e.g. bit vectors)

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 7

System-on-Chip Environment (SCE)

• Integrated Development Environment (IDE)
with support of:
– Graphical frontend (sce, scchart)

– SLDL-aware editor (sced)

– Compiler and simulator (scc)

– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)

– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities (sir_list, sir_tree, …)

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 8

SCE Main Window

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 9

SCE Source Editor

Copyright © 2003 CECS

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 10

SCE Hierarchy Displays

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 11

SCE Compiler and Simulator

Copyright © 2003 CECS

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 12

SCE Profiling and Analysis

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 13

SCE Demonstration

• Application Example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

Copyright © 2003 CECS

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 14

SCE Demonstration

• Application Example: GSM Vocoder
– Exploration of Specification Model
 Simulation

 Profiling

 Performance estimation

 Interactive demonstration

Copyright © 2003 CECS

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 8

Project Assignment 7

• Task: Performance Estimation of the Canny Example
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottlenecks

• Relative complexity: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform
• Absolute timing: Use Linux timing APIs

• Deliverable
– canny.txt (including tables of obtained results)

• Due
– February 19, 2020, 6pm (combined with A6)

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 15

Project Assignment 7

 Performance Estimation of the Canny Edge Detector

• Step 1: Profile the application components ,
obtain relative computational complexity

– Use a provided C++ model (derived from SpecC model)

– Use GNU profiling tools
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components

• Select the main functions of interest

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 16

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 9

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in canny.txt):

Gaussian_Smooth ...%

|------ Receive_Image ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 17

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 18

EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 10

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in canny.txt):

Gaussian_Smooth ...sec ...%

|------ Receive_Image ...sec ...%

|------ Gaussian_Kernel ...sec ...%

|------ BlurX ...sec ...%

\------ BlurY ...sec ...%

Derivative_X_Y ...sec ...%

Magnitude_X_Y ...sec ...%

Non_Max_Supp ...sec ...%

Apply_Hysteresis ...sec ...%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2019 R. Doemer 19

