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Lecture 12: Overview

• Top-Down Embedded Design Flow
– Specification Modeling Guidelines

• System-on-Chip Environment (SCE)
– Design Example: GSM Vocoder

– Profiling and performance estimation

 Interactive demonstration

• Homework Assignment 7
– Performance estimation of the Canny Edge Detector
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Top-Down Embedded Design Flow
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Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure / architecture
– Pure behavioral hierarchy

• Untimed
– Execution in zero (logical) time

– Causal ordering

– Synchronization

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Source: A. Gerstlauer)



EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 5

Specification Modeling Guidelines

• Example: Guidelines for SoC Environment (SCE)
– Clean behavioral hierarchy

• hierarchical behaviors:
no code other than par, pipe, seq, fsm, and  try-trap statements

• leaf behaviors:
Pure ANSI-C code (no SpecC constructs)

– Clean communication
• point-to-point communication via standard channels

• ports of plain type or interface type, no pointers

• port maps to local variables or ports only

• Detailed rules for SoC Environment
– CECS Technical Report:

“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Dömer, et al.
• /opt/sce-20100908/doc/SpecRM.pdf
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Specification Modeling Guidelines

• Converting C reference code to SpecC
– Major functions become behaviors
– Function call tree becomes behavioral hierarchy

• Function call becomes behavior instance call
• Sequential statements become leaf behaviors
• Control flow becomes FSM

– Conditional statements: if, if-else, switch
– Loops: while, for, do-while

– Explicitly specify potential parallelism
– Explicitly specify communication

• Use standard channels, avoid shared variables
• No global variables
• Only local variables in behaviors and functions/methods

– Data types
• Avoid dynamic memory allocation
• Avoid pointers (arrays are preferred)
• Use explicit data types if suitable (e.g. bit vectors)
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System-on-Chip Environment (SCE)

• Integrated Development Environment (IDE)
with support of:
– Graphical frontend (sce, scchart)

– SLDL-aware editor (sced)

– Compiler and simulator (scc)

– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)

– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities (sir_list, sir_tree, …)
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SCE Main Window

Copyright © 2003 CECS
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SCE Source Editor

Copyright © 2003 CECS

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 10

SCE Hierarchy Displays

Copyright © 2003 CECS
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SCE Compiler and Simulator

Copyright © 2003 CECS
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SCE Profiling and Analysis

Copyright © 2003 CECS



EECS222: Embedded System Modeling Lecture 12

(c) 2020 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 12 (c) 2020 R. Doemer 13

SCE Demonstration

• Application Example: GSM Vocoder
– Enhanced full-rate voice codec

• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s

• Encoded bit stream @ 12.2 kbit/s

• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)

• 73 leaf behaviors

• 9139 formatted lines of SpecC code
(~13000 lines of original C code, including comments)

Copyright © 2003 CECS
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SCE Demonstration

• Application Example: GSM Vocoder
– Exploration of Specification Model
 Simulation

 Profiling

 Performance estimation

 Interactive demonstration

Copyright © 2003 CECS
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Project Assignment 7

• Task: Performance Estimation of the Canny Example
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottlenecks

• Relative complexity: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform
• Absolute timing: Use Linux timing APIs

• Deliverable
– canny.txt (including tables of obtained results)

• Due
– February 19, 2020, 6pm (combined with A6)
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Project Assignment 7

 Performance Estimation of the Canny Edge Detector

• Step 1: Profile the application components ,
obtain relative computational complexity

– Use a provided C++ model (derived from SpecC model)

– Use GNU profiling tools
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components

• Select the main functions of interest
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Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in canny.txt):

Gaussian_Smooth ...%

|------ Receive_Image ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%
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Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation
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Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in canny.txt):

Gaussian_Smooth ...sec ...%

|------ Receive_Image ...sec ...%

|------ Gaussian_Kernel ...sec ...%

|------ BlurX ...sec ...%

\------ BlurY ...sec ...%

Derivative_X_Y ...sec ...%

Magnitude_X_Y ...sec ...%

Non_Max_Supp ...sec ...%

Apply_Hysteresis ...sec ...%

100%
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