
EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 14

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 2

Lecture 14: Overview

• Project Assignment 6
– Structural Refinement of the DUT components

– Skipped: Refined structure of Gaussian Smooth

• Project Assignment 7
– Performance estimation by profiling

– Performance estimation by timing measurement

• Project Discussion
– Status and next steps

• Project Assignment 8
– Back-annotation of timing estimates

• Simulator run-time facilities
– Observing simulated time in SystemC

– Observing simulated time in SpecC

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 2

Project Assignment 6

• Task: Hierarchical DUT of the Canny Edge Detector
– Refine the structural hierarchy of the DUT block

– (skipped: refine the structural hierarchy of Gaussian Smooth)

• Steps
1. Refine the DUT structure

• Gaussian Smooth, Derivative, …, Apply Hysteresis

2. Visualize the structural hierarchy of the model

 (skipped: decomposition of Gaussian Smooth)

• Deliverables
– canny.sc or canny.cpp (choose one!)

– canny.tree

• Due: February 19, 2020, 6pm

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 3

Project Assignment 6

• Step 1: Refined hierarchy of the DUT block
– Expected instance tree
Platform platform

|------ DataIn din

|------ DUT canny

| |------ Gaussian_Smooth gaussian_smooth

| |------ Derivative_X_Y derivative_x_y

| |------ Magnitude_X_Y magnitude_x_y

| |------ Non_Max_Supp non_max_supp

| \------ Apply_Hysteresis apply_hysteresis

\------ DataOut dout

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 4

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 3

Project Assignment 6

• Structural model of the DUT of the Canny Edge Detector
– Discussion on whiteboard: Refined DUT structure

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 5

White board photo goes here!

Project Assignment 6

• Skipped: Refined Hierarchy of Gaussian Smooth block
– Instance tree
DUT canny

|------ Gaussian_Smooth gaussian_smooth

| |------ Receive_Image receive

| |------ Gaussian_Kernel gauss

| |------ BlurX blurX

| \------ BlurY blurY

|------ Derivative_X_Y derivative_x_y

|------ Magnitude_X_Y magnitude_x_y

|------ Non_Max_Supp non_max_supp

\------ Apply_Hysteresis apply_hysteresis

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 6

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 4

Project Assignment 6

• Skipped: Refined Hierarchy of Gaussian Smooth block
– Separate components for Kernel, BlurX, and BlurY

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 7

White board photo goes here!

(whiteboard
image
from a
prior
course)

Project Assignment 7

• Task: Performance Estimation of the Canny Example
– Profiling to estimate relative computational complexity

– Instrumentation to measure absolute timing as reference

• Steps
1. Profile the application, identify performance bottlenecks

• Relative complexity: Use GNU profiling tools

2. Instrument the application, measure timing on reference platform
• Absolute timing: Use Linux timing APIs

• Deliverable
– canny.txt (including tables of obtained results)

• Due
– February 19, 2020, 6pm (combined with A6)

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 8

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 5

Project Assignment 7

 Performance Estimation of the Canny Edge Detector

• Step 1: Profile the application components ,
obtain relative computational complexity

– Use a provided C++ model (derived from SpecC model)

– Use GNU profiling tools
 g++ -pg, gprof

• Compile the SystemC source code with option -pg

• Run the simulation once (with instrumentation, gmon.out)

• Run the profiler: gprof Canny

• Validate the reported call tree

• Analyze the “flat profile” for the DUT components

• Select the main functions of interest

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 9

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in canny.txt):

Gaussian_Smooth ...%

|------ Receive_Image ...%

|------ Gaussian_Kernel ...%

|------ BlurX ...%

\------ BlurY ...%

Derivative_X_Y ...%

Magnitude_X_Y ...%

Non_Max_Supp ...%

Apply_Hysteresis ...%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 10

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 6

Project Assignment 7

• Step 1: Profile the application components,
obtain relative computational complexity

– Expected complexity comparison (in canny.txt):

Gaussian_Smooth 9.15s 61.7%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 4.34s 29.2%

\------ BlurY 4.81s 32.4%

Derivative_X_Y 0.95s 6.4%

Magnitude_X_Y 0.66s 4.4%

Non_Max_Supp 2.10s 14.2%

Apply_Hysteresis 1.98s 13.3%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 11

Project Assignment 7

• (skip): Profile the application components,
obtain relative computational complexity

– Reference: An alternative profiling approach
SpecC: SCE profiling results

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 12

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 7

Project Assignment 7

• (skip): Profile the application components,
obtain relative computational complexity

– Reference: An alternative profiling approach
SpecC: SCE profiling results
Gaussian_Smooth 30.5G 56.9%

|------ Receive_Image 0.0G 0.0%

|------ Gaussian_Kernel 0.0G 0.0%

|------ BlurX 15.2G 28.4%

\------ BlurY 15.3G 28.5%

Derivative_X_Y 4.3G 8.1%

Magnitude_X_Y 3.7G 6.9%

Non_Max_Supp 9.2G 17.2%

Apply_Hysteresis 5.8G 10.8%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 13

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

 Since we do not have a prototyping platform available,
we use the department server as reference

– Instrument your model source code:

#include <time.h>

clock_t Tstart, Tstop;

double T1 = 0.0;

...

Tstart = clock();
f();

Tstop = clock();
T1 = (double)(Tstop-Tstart)/CLOCKS_PER_SEC;

– Use global variables for this temporary instrumentation

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 14

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 8

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in canny.txt):

Gaussian_Smooth ...sec ...%

|------ Receive_Image ...sec ...%

|------ Gaussian_Kernel ...sec ...%

|------ BlurX ...sec ...%

\------ BlurY ...sec ...%

Derivative_X_Y ...sec ...%

Magnitude_X_Y ...sec ...%

Non_Max_Supp ...sec ...%

Apply_Hysteresis ...sec ...%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 15

Project Assignment 7

• Step 2: Instrument the application components,
obtain absolute timing on reference platform

– Expected complexity comparison (also in canny.txt):
C++ model: Timing measurement results on Linux server
Gaussian_Smooth 6.83s 52.2%

|------ Receive_Image 0.00s 0.0%

|------ Gaussian_Kernel 0.00s 0.0%

|------ BlurX 2.97s 22.7%

\------ BlurY 3.86s 29.5%

Derivative_X_Y 1.12s 8.6%

Magnitude_X_Y 1.04s 7.9%

Non_Max_Supp 2.08s 15.9%

Apply_Hysteresis 2.02s 15.4%

100%

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 16

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 9

Project Discussion

• Reference: Instrument the application components,
obtain absolute timing on prototyping platform
– Measured timing on Raspberry Pi 3 board:

ARM-based quad-core processor (1.2GHz)

Receive_Image 0 ms per frame

Make_Kernel 0 ms per frame

BlurX 1880 ms per frame

BlurY 2010 ms per frame

Derivative_X_Y 530 ms per frame

Magnitude_X_Y 910 ms per frame

Non_Max_Supp 960 ms per frame

Apply_Hysteresis 740 ms per frame

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 17

Project Discussion

• Discussion Questions
– Does the timing meet our real-time goals?

– What can be done to improve the speed?

 Pipelining

 Parallelization

 Hardware optimizations

 Software optimizations

 Application adjustments

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 18

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 10

Project Assignment 8

• Task: Pipelining and Parallelization of the Canny Model
– Pipeline and parallelize the model to maximize throughput

• Steps
1. Instrument model with logging of simulated time and frame delay

2. Back-annotate estimated timing in DUT components

3. Instrument model with logging of throughput (FPS)

4. Pipeline the DUT into stages for each component

5. Integrate Gaussian Smooth components into pipeline stages

6. Slice the BlurX and BlurY blocks into parallel components

• Deliverables
– canny.sc or canny.cpp (choose one!)

– canny.txt (with observed timing and frame delays)

• Due: February 26, 2020, 6pm

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 19

Project Assignment 8

• Step 1: Logging of simulated time and frame delay
– Expected execution log with timing instrumentation

0: Stimulus sent frame 1.
0: Stimulus sent frame 2.
0: Monitor received frame 1 with 0 ms delay.
0: Stimulus sent frame 3.
0: Monitor received frame 2 with 0 ms delay.
0: Stimulus sent frame 4.
0: Monitor received frame 3 with 0 ms delay.
[...]
0: Stimulus sent frame 20.
0: Monitor received frame 19 with 0 ms delay.
0: Monitor received frame 20 with 0 ms delay.
0: Monitor exits simulation.

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 20

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 11

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 21

Hint: SystemC Simulation

• Compilation and Simulation
– g++ DesignName.cpp -I$SYSTEMC/include \

-L$SYSTEMC/lib-linux64 \
-Xlinker -R -Xlinker $SYSTEMC/lib-linux64 \
-lsystemc -o simple_fifo

– ./DesignName

– Header file systemc.h
• Access to simulation time

– Time units: enum sc_time_unit {SC_FS, SC_PS, SC_NS,
SC_US, SC_MS, SC_SEC};

– Constructor: sc_time(double, sc_time_unit)

– Current simulation time: sc_time_stamp(), sc_delta_count()

– Conversion functions: .to_string().c_str()

• Reference: Doulos SystemC Training (part 1, slide 40)

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 22

Hint: SystemC Simulation

• Observing Simulated Time in SystemC
• Example: Print the current simulation time
#include “systemc.h”

...

sc_time t;

uint64 d;

...

t = sc_time_stamp(); d = sc_delta_count();

printf(“Time is now %s pico seconds.\n”, t.to_string().c_str());

printf(“(delta count is %ull)\n”, d);

wait(42000, SC_NS);

printf(“Time is now %s pico seconds.\n”, t.to_string().c_str());

printf(“Time is now %s nano seconds.\n”,

(t/1000).to_string().c_str());

...

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 12

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 23

Hint: SpecC Simulation

• Compilation and Simulation
– scc DesignName –sc2out –vv –ww

– ./DesignName

– Header file sim.sh
• Access to simulation time

– macros PICO_SEC, NANO_SEC, MICRO_SEC,
MILLI_SEC, SEC

– typedef sim_time, sim_delta, sim_time_string

– function now(), delta()

– conversion functions time2str(), str2time()

• Handling of bit vectors
– conversion functions bit2str(), ubit2str(), str2bit(),
str2ubit()

• Handling of long-long values
– conversion functions ll2str(), ull2str(), str2ll(),
str2ull()

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 24

Hint: SpecC Simulation

• Observing Simulated Time in SpecC
• Example: Print the current simulation time
#include <sim.sh>

...

sim_time t;

sim_delta d;

sim_time_string buffer;

...

t = now(); d = delta();

printf(“Time is now %s pico seconds.\n”, time2str(buffer, t));

printf(“(delta count is %s)\n”, time2str(buffer, d);

waitfor 42000 NANO_SEC;

printf(“Time is now %s pico seconds.\n”, time2str(buffer, t));

printf(“Time is now %s nano seconds.\n”,

time2str(buffer, t/(1 NANO_SEC)));

...

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 13

Project Assignment 8

• Step 1: Logging of simulated time and frame delay
– Extended test bench structure:

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 25

White board photo goes here!

Project Assignment 8

• Step 2: Back-annotate timing in DUT components
– Insert wait-for-time statements into your model

– Assume Rasberry Pi 3 performance:

Receive_Image 0 ms per frame

Make_Kernel 0 ms per frame

BlurX 1880 ms per frame

BlurY 2010 ms per frame

Derivative_X_Y 530 ms per frame

Magnitude_X_Y 910 ms per frame

Non_Max_Supp 960 ms per frame

Apply_Hysteresis 740 ms per frame

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 26

EECS222: Embedded System Modeling Lecture 14

(c) 2020 R. Doemer 14

Project Assignment 8

• Step 3: Logging of frame throughput
– Expected execution log with throughput instrumentation

[...]
133570: Monitor received frame 19 with 28120 ms delay.
133570: 7.030 seconds after previous frame, 0.142 FPS.
140600: Monitor received frame 20 with 28120 ms delay.
140600: 7.030 seconds after previous frame, 0.142 FPS.
140600: Monitor exits simulation.

EECS222: Embedded System Modeling, Lecture 14 (c) 2020 R. Doemer 27

