
EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 2

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 2

Lecture 2: Overview

• Introduction to Embedded System Design
– Abstraction Levels

– Top-down system design flow

• Models of Computation

• System-Level Description Languages

• Separation of Concerns
– Computation vs. Communication

– Intellectual Property (IP)



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 3

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 4

System level
1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

Transistor

A
b

st
ra

c
ti

o
n

A
cc

u
ra

c
y

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 3

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 5

Abstraction Levels

TimingLow abstraction

High abstraction

Implementation Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 6

Top-Down System Design Flow

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 4

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 7

Models of Computation

• Computational Model
– Formal, abstract description of a system
– Various degrees of

• supported features
• complexity
• expressive power

• Examples
– Evolution process from FSM to PSM

• Finite State Machine (FSM)
• FSM with Data (FSMD)
• Super-state FSMD
• ...
• Program State Machine (PSM)

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 8

Models of Computation

• Finite State Machine (FSM)
– Basic model for describing control

– States and state transitions
• FSM = <S, I, O, f, h>

– Two types:
• Mealy-type FSM (input-based)

• Moore-type FSM (state-based)

S1 S2

S3

FSM model



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 9

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)
– Basic model for describing computation

– Directed graph (acyclic)
• Nodes: operations

• Edges: data flow, dependency of operations

Op2 Op3

Op4

Op6

Op1

Op5

DFG model

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 10

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)
– Combined model for control and computation

• FSMD = FSM + DFG

– Implementation: controller plus data path (RTL processor)

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5

Op1 Op2

Op1 Op2

Op3



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 11

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)
– FSMD with complex, multi-cycle states

• States described by procedures in a programming language

SFSMD model

PS3

PS1 PS2PS2

PS3

PS1

a = a + b;
c = c + d;

a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
a = a + c;
}

a = 42;
b = a * 2;
for(c=0; c<100; c++)
{ b = c + a;
if (b < 0)

b = -b;
else

b = b + 1;
a = b * 10;
}

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 12

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)

• Hierarchical Concurrent FSM (HCFSM)
– FSM extended with hierarchy and concurrency

• Multiple FSMs composed hierarchically and in parallel

– Example: Statecharts

S4

S5

S3

S2

S1

HCFSM model



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 13

Models of Computation

• Finite State Machine (FSM)

• Data Flow Graph (DFG)

• Finite State Machine with Data (FSMD)

• Super-State FSM with Data (SFSMD)

• Hierarchical Concurrent FSM (HCFSM)

• Program State Machine (PSM)
– HCFSMD plus programming language

• States described by procedures
in a programming language

– Example: SpecC

PS4

PS5

PS3

PS2

PS1

...
a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
else

c = c + e;
a = c;
}

...

PSM model

Models of Computation

• State-based Models
– FSM, DFG, FSMD, SFSMD, HCFSM, PSM

– Petri Nets

– …

• Process-based Models
– Processes and threads

– Kahn Process Network (KPN)

– Synchronous Data Flow (SDF)

– …

• Imperative Programming Models
– C/C++, …

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 14



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 15

System-Level Description Languages

• Goals and Requirements
– Formality

• Formal syntax and semantics
– Executability

• Validation through simulation
– Synthesizability

• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts

– Simplicity
• Minimality

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 16

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

not supported partially supported supported

• Requirements• Requirements supported by existing languages



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 9

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 17

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

not supported partially supported supported

• Requirements• Requirements supported by existing languages

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 18

Past Present Future

6000+
Computer
Languages

(Boston 
Computer 

Museum, 1995)

Evolution of Design Languages

• Timeline of system-level design languages

C++
1986

C
1978

VHDL
1987

Verilog
1984

Java
1995

Dates indicate year of publication of first reference book
and/or year of invention. Please correct me if I’m wrong!

SpecC
2000

SystemC
2002

SystemVerilog
2005

BlueSpec
2003?

?



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 10

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 19

System-Level Description Languages

• Examples of Languages in Use Today
– C/C++

• ANSI standard programming languages, software design
• Initially used for system design because of availability, practicality

– SystemC
• IEEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
• C++ library and application programming interface (API)

– SpecC
• SLDL with compiler, based on the ANSI C language standard
• Designed and built at UCI, promoted by SpecC Technology Open Consortium

– Matlab
• Algorithm design, specification and simulation in engineering

– UML
• Unified Modeling Language, graphical software specification and engineering

– SystemVerilog
• Verilog with C extensions

– SDL
• Telecommunication standard by ITU, used in COSMOS

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 20

System-Level Description Languages

• Examples of Languages in Use Today, Course Coverage
– C/C++

• ANSI standard programming languages, software design
• Initially used for system design because of availability, practicality

 SystemC
• IEEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
• C++ library and application programming interface (API)

 SpecC
• SLDL with compiler, based on the ANSI C language standard
• Designed and built at UCI, promoted by SpecC Technology Open Consortium

– Matlab
• Algorithm design, specification and simulation in engineering

 UML
• Unified Modeling Language, graphical software specification and engineering

– SystemVerilog
• Verilog with C extensions

– SDL
• Telecommunication standard by ITU, used in COSMOS



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 11

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 21

Separation of Concerns

• Fundamental Principle in Modeling of Systems

• Clear separation of concerns
– address separate issues independently

• System-Level Description Language (SLDL)
– orthogonal concepts

– orthogonal constructs

• System-level Modeling
– Computation

• encapsulated in modules / behaviors

– Communication
• encapsulated in channels

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 22

Computation vs. Communication

• Traditional model
– Processes and signals

– VHDL example:

– Mixture of computation and communication

 Automatic replacement impossible!

s2

s1

s3

P1 P2

entity P1 […] process […]
s1 <= ’1’;
s2 <= ’1’;
wait until s3’event and s3 = ’1’;
s2 <= ’0’;
xy = x + 2 * y;
s1 <= xy;
s2 <= ’1’;
wait until s3’event and s3 = ’1’;
s1 <= ’0’;
s2 <= ’0’;
[…]



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 12

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 23

Computation vs. Communication

• SpecC model
– Behaviors and

channels

– SpecC example:

– Separation of computation and communication

 Plug-and-play!

channel C1 […]
{ send (int d)
{ v1 = d;
notify e2;
wait e3;

}
[…]

}

behavior B1 […]
{
c.send(1);

xy = x + 2 * y;

c.send(xy);

v1 = 0;
[…]

}

B2

e2

v1

e3

B1
C1

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 24

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

• SpecC model

– Behaviors and channels

– Separation of computation and communication

– Plug-and-play

s2

s1

s3

P1 P2

B2

v2

v1

v3

B1
C1



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 13

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 25

Computation vs. Communication

• Protocol Inlining
– Specification model

– Exploration model

• Computation in behaviors

• Communication in channels

B2

v2

v1

v3

B1
C1

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 26

Computation vs. Communication

• Protocol Inlining
– Specification model

– Exploration model

• Computation in behaviors

• Communication in channels

– Implementation model

• Channel disappears

• Communication inlined into behaviors

• Wires exposed

B2

v2

v1

v3

B1
C1

B2B1

v2

v1

v3



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 14

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 27

Computation vs. Communication

• Protocol Inlining

– SpecC example:

B2

e2

v1

e3

B1
C1

B2B1

e2

v1

e3

behavior B1 […]
{ v1 = 1;
notify e2;
wait e3;
xy = x + 2 * y;
v1 = xy;
notify e2;
wait e3;
v1 = 0;
[…]

}

channel C1 […]
{ send (int d)
{ v1 = d;
notify e2;
wait e3;

}
[…]

}

behavior B1 […]
{
c.send(1);

xy = x + 2 * y;

c.send(xy);

v1 = 0;
[…]

}

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 28

v2

v1

IP in wrapper

Intellectual Property (IP)

• Computation IP: Wrapper model
B

Synthesizable
behavior

IP



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 15

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 29

Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 30

Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

• Protocol inlining with wrapper

B1

v2

v1 IP

before after

v2

v1 IP
B1



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 16

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 31

Intellectual Property (IP)

• Computation IP: Adapter model
B

replacable
at any time

Synthesizable
behavior

T

Transducer

v2

v1
A

Adapter

IP

IP

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 32

Intellectual Property (IP)

• Computation IP: Adapter model
T

v2

v1

IP
A

B

replacable
at any time

Synthesizable
behavior

Transducer Adapter IP

• Protocol inlining with adapter

B1

v2

v1

IP
A

before

B1

v2

v1

IP

after



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 17

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 33

IP protocol channel in wrapper

C2

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel

v2

v1

v3

C1

IP

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 34

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel IP protocol channel in wrapper

v2

v1

v3

IP

• Protocol inlining with hierarchical channel

B1 B2

v2

v1

before

v2

v1

B1 B2

after

C1 C2



EECS222: Embedded System Modeling Lecture 2

(c) 2020 R. Doemer 18

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 35

Intellectual Property (IP)

• Incompatible busses: Transducer insertion

T

v2

v1

v3

B1

v5

v4

IP
A

Transducer Adapter IPIP busSystem busSynthesizable
behavior

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 36

Intellectual Property (IP)

• Incompatible busses: Transducer insertion

• Protocol inlining with transducer

T

v2

v1

v3

B1

v5

v4

IP
A

TB1

v5

v4

IP

v2

v1

v3

Transducer Adapter IPIP busSystem busSynthesizable
behavior

after


