EECS222: Embedded System Modeling

EECS 222:
Embedded System Modeling
Lecture 2

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

— Abstraction Levels

Models of Computation

Separation of Concerns

— Intellectual Property (IP)

EECS222: Embedded System Modeling, Lecture 2

Lecture 2: Overview
Introduction to Embedded System Design

— Top-down system design flow

System-Level Description Languages

— Computation vs. Communication

(c) 2020 R. Doemer

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

Abstraction Levels

+ System-on-Chip (SoC) design faces tremendous
increase of design complexity

Level Number of components
1E0
System
1E1
Algorithm 1E2 c
o >
= o
1E3 °© [
RTL / e \ E 3
4 Q
E-}
L - NI
Gate / 1€ \
/ 1E6 \
Transistor / 1E7 \
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer

Abstraction Levels

» System-on-Chip (SoC) design faces tremendous
increase of design complexity

* Move to higher levels of abstraction!

Level Number of components

1E0

System level

1E1

1E2

mom om
U!l!
Abstraction
Accuracy

/[1 A\
/ 1E6 \
i 1E7
——/ \
 —
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

Abstraction Levels

- unstructured

Structure

I physical layout

Structure

EECS222: Embedded System Modeling, Lecture 2

High abstraction untimed 4+
—
1
Implementation Detail Timing
real time T
Low abstraction Timing

(c) 2020 R. Doemer

Top-Down System Design Flow

[requirements

I pure functional

- transaction level

- bus functional

F RTL/IS

Structure

Product features

Specification
model
Architecture
model
Communication
model
Implementation
model

Manufacturing

EECS222: Embedded System Modeling, Lecture 2

constraints T

untimed T

estimated timing 1

timing accurate 4

cycle accurate T

Timing

(c) 2020 R. Doemer

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

» Computational Model

— Various degrees of
» supported features
» complexity
* expressive power

» Examples

+ Finite State Machine (FSM)
+ FSM with Data (FSMD)
» Super-state FSMD

* Program State Machine (PSM)

EECS222: Embedded System Modeling, Lecture 2

Models of Computation

— Formal, abstract description of a system

— Evolution process from FSM to PSM

(c) 2020 R. Doemer

* Finite State Machine (FSM)
— Basic model for describing control
— States and state transitions
s FSM=<S§, 1,0, f, h>
— Two types:
* Mealy-type FSM (input-based)
* Moore-type FSM (state-based)

FSM model

EECS222: Embedded System Modeling, Lecture 2

Models of Computation

(c) 2020 R. Doemer

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

Models of Computation

* Finite State Machine (FSM)

» Data Flow Graph (DFG)
— Basic model for describing computation
— Directed graph (acyclic)
* Nodes: operations
» Edges: data flow, dependency of operations

er) @) O
004
SR

DFG model

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 9

Models of Computation

* Finite State Machine (FSM)
» Data Flow Graph (DFG)

» Finite State Machine with Data (FSMD)

— Combined model for control and computation
*» FSMD =FSM + DFG

— Implementation: controller plus data path (RTL processor)

>

FSMD model

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 10

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

Models of Computation

» Finite State Machine (FSM)
» Data Flow Graph (DFG)
* Finite State Machine with Data (FSMD)

» Super-State FSM with Data (SFSMD)

— FSMD with complex, multi-cycle states
» States described by procedures in a programming language

a = 42;
b=a=*2;
for(c=0; c<100; c++)
{b=c+ a;
if (b <0)
b = -b;
else
while (a<100) - > b=b+1;
{b=b+a; a=b * 10;
if (b > 50) 3
c=c +d;
SFSMD model
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 1"

Models of Computation

* Finite State Machine (FSM)

» Data Flow Graph (DFG)

» Finite State Machine with Data (FSMD)
» Super-State FSM with Data (SFSMD)

» Hierarchical Concurrent FSM (HCFSM)
— FSM extended with hierarchy and concurrency
* Multiple FSMs composed hierarchically and in parallel
— Example: Statecharts

HCFSM model

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 12

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

Models of Computation

+ Finite State Machine (FSM)

+ Data Flow Graph (DFG)

+ Finite State Machine with Data (FSMD)
» Super-State FSM with Data (SFSMD)

» Hierarchical Concurrent FSM (HCFSM)

* Program State Machine (PSM)
— HCFSMD plus programming language

« States described by procedures a = 42;
in a programming language Wz'!')e_(gfog?
— Example: SpecC if (b > 50)
c=c+d;
else
PSM model c=c+e;
a = ¢c;
}
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 13

Models of Computation

« State-based Models
— FSM, DFG, FSMD, SFSMD, HCFSM, PSM
— Petri Nets

* Process-based Models
— Processes and threads
— Kahn Process Network (KPN)
— Synchronous Data Flow (SDF)

» Imperative Programming Models
— C/C++, ...

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 14

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling

System-Level Description Languages

» Goals and Requirements
— Formality
» Formal syntax and semantics
— Executability
+ Validation through simulation
— Synthesizability
* Implementation in HW and/or SW
» Support for IP reuse
— Modularity
» Hierarchical composition
» Separation of concepts
— Completeness
» Support for all concepts found in embedded systems
— Orthogonality
» Orthogonal constructs for orthogonal concepts
— Simplicity
* Minimality

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 15

System-Level Description Languages

* Requirements supported by existing languages

% N\ %, \%
A & %, O) S,
o\, "{9,9 % “%, %‘?9,. RN %
NN TN
Behavioral
hierarchy
Structural
hierarchy
Concurrency

Synchronization

Exception
handling

Timing
State
transitions
Composite
data types

©00®0000
©0080000
0000®®00
a000000C
0O0®00ee0
Cem~=000@
e0~000 0
00000000

Q not supported partially supported . supported

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 16

(c) 2020 R. Doemer

Lecture 2

EECS222: Embedded System Modeling Lecture 2

System-Level Description Languages

* Requirements supported by existing languages

xxo
&
0\\?@v
s@é
&
&
r>°e>
&
N
2
&%

<

o

&
2
5

o>
0&

<
N
00
@)
™

Behavioral

hierarchy
Structural

hierarchy

Concurrency

Synchronization

Exception
handling

Timing
State
transitions
Composite
data types

®00®8800 ¢
00000000
20000000
0O0®00ee0
Cemm0000®

@008 OC0O00
000 @®@OO00
00200000
00000000
00000000

O not supported D partially supported . supported

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 17

Evolution of Design Languages

« Timeline of system-level design languages
Present Future

(Boston
Computer
Museum, 1995)

Dates indicate year of publication of first reference book
and/or year of invention. Please correct me if I'm wrong!

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 18

(c) 2020 R. Doemer 9

EECS222: Embedded System Modeling

System-Level Description Languages

« Examples of Languages in Use Today
— C/C++
» ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
— SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
* C++ library and application programming interface (API)
— SpecC
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium
— Matlab
» Algorithm design, specification and simulation in engineering
- UML
» Unified Modeling Language, graphical software specification and engineering
— SystemVerilog
» Verilog with C extensions
- SDL
» Telecommunication standard by ITU, used in COSMOS

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 19

System-Level Description Languages

+ Examples of Languages in Use Today, Course Coverage
— C/C++
» ANSI standard programming languages, software design
« Initially used for system design because of availability, practicality
SystemC
» |EEE standard 1666-2011 (initially created at UCI, standardized by OSCI)
» C++ library and application programming interface (API)
» SpecC
» SLDL with compiler, based on the ANSI C language standard
» Designed and built at UCI, promoted by SpecC Technology Open Consortium

\/

— Matlab
» Algorithm design, specification and simulation in engineering
» UML
» Unified Modeling Language, graphical software specification and engineering
— SystemVerilog
» Verilog with C extensions
— SDL
» Telecommunication standard by ITU, used in COSMOS
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 20

(c) 2020 R. Doemer

Lecture 2

10

EECS222: Embedded System Modeling

Separation of Concerns

Fundamental Principle in Modeling of Systems
Clear separation of concerns

— address separate issues independently
System-Level Description Language (SLDL)

— orthogonal concepts

— orthogonal constructs

System-level Modeling

— Computation

» encapsulated in modules / behaviors
— Communication

* encapsulated in channels

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 21

Computation vs. Communication

* Traditional model P1 P2

— Processes and signals (_ = =

— VHDL example: entity P1 [.] process [.]
»1-

[@)
Il

— Mixture of computation and communication
» Automatic replacement impossible!

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 22

(c) 2020 R. Doemer

Lecture 2

11

EECS222: Embedded System Modeling

Computation vs. Communication
SpecC model B1 = B2
—
— Behaviors and [e2]
channels [e3]
— SpecC example: behavior B1 [.] channel C1 [.]
{ send (int d)
c.send(1); {vl=d;
notify e2;
Xy =X +2 *vy; wait e3;
3
c.send(xy); L1
3
vl = 0;
L]
i 4 4
— Separation of computation and communication
» Plug-and-play!
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 23

Computation vs. Communication

* Traditional model P1 1 P2

(:— [s2] (=
= = =
— Processes and signals

— Mixture of computation and communication
— Automatic replacement impossible

c1
* SpecC model B1 i) B2
— Behaviors and channels
— Separation of computation and communication
— Plug-and-play
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 24

(c) 2020 R. Doemer

Lecture 2

12

EECS222: Embedded System Modeling

Computation vs. Communication

* Protocol Inlining

C1
— Specification model B1 C B2
— Exploration model —
» Computation in behaviors
* Communication in channels
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 25

Computation vs. Communication

* Protocol Inlining

c1
— Specification model [
— Exploration model . — N — b
» Computation in behaviors
» Communication in channels
— Implementation model B1 B2
‘ [vi)
B [v2] 4

» Channel disappears
* Communication inlined into behaviors
» Wires exposed

EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 26

(c) 2020 R. Doemer

Lecture 2

13

EECS222: Embedded System Modeling

Computation vs. Comm

* Protocol Inlining

B1

unication

s

)\
e
T

B2 B1
D |
J

— SpecC example:

behavior Bl [..] channel C1 [.] behavior Bl [..]
{ send (int d) {vl=1;
c.send(1); {vl=d; notify e2;
notify e2; wait e3;
Xy = X +2 *y; wait e3; Xy = X +2 *y;
3} » vl = xy;
c.send(xy); L[] notify e2;
3 wait e3;
vl = 0; vl = 0;
L1 L1
7 /4 4
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 27
« Computation IP: Wrapper model
il
¥
]
Synthesizable IP in wrapper
behavior
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 28

(c) 2020 R. Doemer

Lecture 2

14

EECS222: Embedded System Modeling

T

replacable

at any time

Synthesizable Transducer
behavior

EECS222: Embedded System Modeling, Lecture 2

« Computation IP: Wrapper model

Intellectual Property (IP)

)

AN

IP in wrapper

(c) 2020 R. Doemer 29

at any time

Synthesizable Transducer
behavior

* Protocol inlining with wrapper

EECS222: Embedded System Modeling, Lecture 2

B

=3

before

Intellectual Property (IP)
« Computation IP: Wrapper model
] |

o)

A%

IP in wrapper

after

(c) 2020 R. Doemer 30

(c) 2020 R. Doemer

Lecture 2

15

EECS222: Embedded System Modeling

» Computation IP: Adapter model

Intellectual Property (IP)

T

* Protocol inlining with adapter

A
B

before

E=] ol
) %

EECS222: Embedded System Modeling, Lecture 2

after

(c) 2020 R. Doemer

A
b replacable B ;
= at any time B .
Synthesizable Transducer Adapter IP
behavior
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 31
Intellectual Property (IP)
« Computation IP: Adapter model
T A
b replacable - :
- at any time 0 .
Synthesizable Transducer Adapter P
behavior

32

(c) 2020 R. Doemer

Lecture 2

16

EECS222: Embedded System Modeling

Intellectual Property (IP)

« Communication IP: Channel with wrapper

C1 C2
- replacable P
at any time
Virtual channel IP protocol channel in wrapper
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 33

Intellectual Property (IP)

« Communication IP: Channel with wrapper
C1 C2

replacable P
at any time

Virtual channel IP protocol channel in wrapper

o

* Protocol inlining with hierarchical channel

B2
before
EECS222: Embedded System Modeling, Lecture 2 (c) 2020 R. Doemer 34

(c) 2020 R. Doemer

Lecture 2

17

EECS222: Embedded System Modeling

Intellectual Property (IP)

» Incompatible busses: Transducer insertion

B1 - T
Synthesizable System bus Transducer
behavior

EECS222: Embedded System Modeling, Lecture 2

Adapter IP bus

(c) 2020 R. Doemer

IP

35

Intellectual Property (IP)

» Incompatible busses: Transducer insertion

B1 - T
Synthesizable System bus Transducer
behavior

Adapter IP bus

* Protocol inlining with transducer

B1

=3

B (v1] o\ "
i [v2]
B [va] 3

after

EECS222: Embedded System Modeling, Lecture 2

=

(c) 2020 R. Doemer

36

(c) 2020 R. Doemer

Lecture 2

18

