
EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 1

EECS 222:
Embedded System Modeling

Lecture 20

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 2

Lecture 20: Overview

• Discrete Event Simulation Semantics
– Discrete Event Simulation

– Parallel Discrete Event Simulation

– Out-of-Order Parallel Discrete Event Simulation

• Formal Execution Semantics
– Time-Interval Formalism

• Recoding Infrastructure for SystemC (RISC)
– Out-of-Order Parallel Simulation for SystemC

– Experimental results

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 2

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 3

Discrete Event Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– available in LRM (appendix), good for documentation

 abstract definition (defines a set of valid implementations)

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 4

Discrete Event Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO

E
valuation phase

D
elta C

ycle

T
im

e C
ycle

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 3

Discrete Event Simulation (DES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 5

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Reference Simulators
– Both SystemC and SpecC

implement cooperative multi-threading

– Example: Execution of four threads

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

th0

Discrete Event Simulation (DES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 6

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Specific Example:

Accellera SystemC
Proof-of-Concept Library

 Root Thread
– Elaboration phase

– Scheduling tasks
• Event notifications

• Channel updates

• Delta cycle updates

• Simulation time updates

– SC_METHOD calls
• (not shown)

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 4

Discrete Event Simulation (DES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 7

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1 Parallel Simulation!?

• SLDL Execution Semantics
– SystemC prescribes

Cooperative Multi-Threading
• SystemC LRM defines:

“process instances execute without
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 8

Formal Execution Semantics

• Examples of Formally Defined Semantics
1) Time-interval formalism for SpecC

• Formally defines timed execution semantics
• Covers sequentiality, concurrency, synchronization
• Allows reasoning over execution order, dependencies
Discussed in the following slides!

2) Abstract State Machines (ASM)
• Completely formal execution semantics

• wait, notify, notifyone, par, pipe, try-trap-interrupt
• Operational semantics only (no data types!)

• Abstract models of SpecC and SystemC match
• Abstract models closely match VHDL, Verilog
Not discused in this course

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 5

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 9

Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of par)

• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)

{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 10

• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time

– other statements execute in zero simulation time

behavior B
{ void main(void)

{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0 <= Tstart(a) < Tend(a) < 1
0 <= Tstart(w) < Tend(w) = 10

10 <= Tstart(b) < Tend(b) < 11

Formal Execution Semantics

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 6

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 11

Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f) < Tend(f) <= Tend(B)

behavior B2
{ void main(void)
{ d; e; f; }

};

behavior B1
{ void main(void)
{ a; b; c; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 12

Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <= Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d) < Tend(d) <= Tend(B)

behavior B2
{ void main(void)
{ c; notify e; d; }

};

behavior B1
{ void main(void)
{ a; wait e; b; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 13

• Time-interval formalism
– Atomicity

• Since there is generally no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary

• SpecC 2.0: Channels behave as Monitors!
– A mutex is implicitly contained in each channel instance

– Each channel method implicitly

» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes
– wait and waitfor statements implicitly (and atomically!)

» release an acquired mutex in a channel, and

» re-acquire the mutex before execution resumes

 This easily enables safe communication
without heavy restrictions to the implementation!

Formal Execution Semantics

Discrete Event Simulation (DES)

 Parallel Simulation!?

• Safe Communication in Parallel Execution Context
 Requires protection of inter-thread communication!

– SpecC
• Preemptive multi-threading mandates channels as “monitors”

– SystemC
• Cooperative multi-threading assumes execution “without interruption”

 Protection: Insert a mutex lock into channel instances
• Lock the channel

on thread entry

• Unlock the channel
on thread exit

 Atomic execution
of channel methods

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 14

Channel

Thread 2Thread 1

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 8

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 15

• Review: Sequential DES Algorithm
– Active Threads

are managed
in READY queue

– Simulation progress
• Delta cycle

• Time cycle

 Scheduler picks
a single thread
and executes it

Parallel Discrete Event Simulation (PDES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 16

Parallel Discrete Event Simulation (PDES)

• Parallel DES Algorithm
– Active threads

are managed
in READY queue

– Simulation progress
• Delta cycle

• Time cycle

 Scheduler
picks N threads
and executes
them in parallel

 N = number
of available
CPU cores

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 9

Parallel Discrete Event Simulation (PDES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 17

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers: Synchronous PDES

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and addressed

(roll back)

Parallel Discrete Event Simulation (PDES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 18

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle,

• OR if there are no conflicts!

 Breaks synchronization barrier

 Threads run as soon as possible,
even ahead of time

 Results in even higher speedup!
• [DATE’12], [IEEE TCAD’14]

– Needs compiler support for
data and event conflict analysis!
 Preserves the accuracy

of cause and effect relationship

 Accurate results and simulation time

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 10

Recoding Infrastructure for SystemC (RISC)

• Advanced Parallel SystemC Simulation
– Aggressive PDES on many-core host platforms

– Maximum compliance with IEEE SystemC semantics

• Introduction of a Dedicated SystemC Compiler
– Advanced conflict analysis for safe parallel execution

– Automatic model instrumentation and code generation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-thread safe primitives

– Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)

• Open Source
– Freely available for evaluation and collaboration

– Thanks to Intel Corporation!

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 19

Recoding Infrastructure for SystemC (RISC)

• Out-of-Order PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Combined: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive summary with HybridThreads extension

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 20

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 11

RISC: Dedicated SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler (from LLNL)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 21

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source
transformations

Source:
Lawrence Livermore National Laboratory (LLNL)

RISC: Dedicated SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 22

RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 12

RISC: Dedicated SystemC Compiler

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 23

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph

2) Parallel access conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 1: Build a Segment Graph

RISC: Dedicated SystemC Compiler

• Segment Graph
– Segment Graph is a directed graph

• Nodes: Segments

Code statements executed
between two scheduling steps

– Expression statements
– Control flow statements (if, while, …)

– Function calls

• Edges: Segment boundaries

 Primitives that trigger scheduler entry
– wait(event)

– wait(time)

 Segment Graph is built automatically by the compiler [TCAD’14]
• From the model source code

• Via Abstract Syntax Tree and Control Flow Graph

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 24

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 13

Step 2:
Perform Conflict Analysis

RISC: Dedicated SystemC Compiler

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 25

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Parallel access conflict analysis

3) Model instrumentation

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Instrumentation!

RISC: Compiler and Simulator

• Compiler and Simulator work hand in hand
– Compiler performs conservative static analysis

– Analysis results are passed to the simulator

– Simulator can make safe scheduling decisions quickly

 Automatic Model Instrumentation
 Static analysis results are inserted into the source code

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 26

RISC Simulator

C++
Compiler

Out-of-Order
Parallel

Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

Input Model

Parallel
SystemC
Library

Parallel
C++ Model

Model Instrumentation:
Segment and Instance IDs
Segment Conflict Tables

Time Advance Tables

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 14

• Simulator kernel with Out-of-Order Parallel Scheduler
– Conceptual OoO PDES execution

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 27

RISC: Parallel SystemC Simulator

Issue
Threads

Issue threads…

• truly in parallel and out-of-order

• whenever they are ready

• and have no conflicts!

 Fast conflict table lookup

 Optimized thread-to-core
mapping

RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding with different frame rates

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 28

Video
30 FPS

2 Audio Channels
38.28 FPS

Multimedia
input

stream

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

1: SC_MODULE(VideoCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4: …
5: while(1) {
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(33330, SC_US);
9: p2->send(outFrm);

10: }
11: };

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4: …
5: while(1) {
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(26120, SC_US);
9: p2->send(outFrm);

10: }
11: };

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 15

RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

2. Reference simulator schedule (DES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 29

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

Video

Left
Right

0

33.33 66.67

78.38

100

Frame 3Frame 1 Frame 2

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

Time [ms] …52.2526.12

LF 4

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

3. Synchronous parallel schedule (PDES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 30

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

0 26.12

33.33 66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

52.25

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 16

RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

4. Out-of-order parallel schedule (OoO PDES)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 31

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

• Simulator Run Times
– 4-core Intel® Xeon® CPU at 3.4 GHz

– RISC v0.2.1, Posix-threads

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 32

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

DES PDES
OoO

PDES

10 sec
stream

Run Time 6.98 s 4.67 s 2.94 s

CPU Load 97% 145% 238%

Speedup 1 x 1.49 x 2.37 x

100 sec
stream

Run Time 68.21 s 45.91 s 28.13 s

CPU Load 100% 149% 251%

Speedup 1 x 1.49 x 2.42 x

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 17

RISC: Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Mandelbrot Set

• Mathematical set of points
in complex plane

– Two-dimensional fractal shape

• High computation load
– Recursive/iterative function

• Embarrassingly parallel
– Parallelism at pixel level

– SystemC Model
• TLM abstraction

• Horizontal image slices

• Highly configurable

• Parallelism parameter
from 1 to 256 slices

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 33

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

RISC: Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
 Simulated Graphics Demonstration

(when network delays prevent actual graphical demo)

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 34

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 18

RISC: Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Simulator run times on 16-core Intel® Xeon® multi-core host

– 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded

– RISC V0.2.1, Posix-threads

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 35

Parallel
Slices

DES PDES OOO PDES

Run
Time

CPU
Load

Run
Time

CPU
Load

Speedup
Run
Time

CPU
Load

Speedup

1 162.13 s 99% 162.06 s 100% 1.00 x 161.90 s 100% 1.00 x
2 162.19 s 99% 96.50 s 168% 1.68 x 96.48 s 168% 1.68 x
4 162.56 s 99% 54.00 s 305% 3.01 x 53.85 s 304% 3.02 x
8 163.10 s 99% 29.89 s 592% 5.46 x 30.05 s 589% 5.43 x

16 164.01 s 99% 19.03 s 1050% 8.62 x 20.08 s 997% 8.17 x
32 165.89 s 99% 11.78 s 2082% 14.08 x 11.99 s 2023% 13.84 x
64 170.32 s 99% 9.79 s 2607% 17.40 x 9.85 s 2608% 17.29 x

128 174.55 s 99% 9.34 s 2793% 18.69 x 9.39 s 2787% 18.59 x
256 185.47 s 100% 8.91 s 2958% 20.82 x 8.90 s 2964% 20.84 x

• Many-Core Target Platform: Intel® Xeon Phi™
– Many Integrated Core (MIC) architecture

• 1 Coprocessor 5110P CPU at 1.052 GHz

• 60 physical cores with 4-way hyper-threading
– Appears as regular Linux host with 240 cores

• Up to 8 lanes available for vector processing

 RISC extended for exploiting 2 types of parallelism
– Out-of-Order PDES: thread-level parallelism

– Intel® compiler SIMD: data-level parallelism

 RISC SIMD Advisor identifies functions with data-level
parallelism suitable for SIMD vectorization

 DAC ’17 paper:
"Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation”

RISC: Experiments and Results

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 36

EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 19

PAR MT SIMD MT+SIMD
1
2
4
8

16
32
64

128
256

• Many-Core Target Platform: Intel® Xeon Phi™
– Exploiting thread- and data-level parallelism [DAC’17]

– Mandelbrot renderer (graphics pipeline application)

• Experimental Results:

 Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 37

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

MT

SIMD

MT+SIMD

RISC: Experiments and Results

PAR MT SIMD MT+SIMD
1 1.00
2 1.68
4 3.04
8 5.84

16 11.37
32 21.32
64 41.07

128 46.29
256 49.90

PAR MT SIMD MT+SIMD
1 1.00 6.92
2 1.68 6.92
4 3.04 6.92
8 5.84 6.92

16 11.37 6.92
32 21.32 6.91
64 41.07 6.90

128 46.29 6.89
256 49.90 6.87

PAR MT SIMD MT+SIMD
1 1.00 6.92 6.94
2 1.68 6.92 11.77
4 3.04 6.92 21.19
8 5.84 6.92 40.10

16 11.37 6.92 72.52
32 21.32 6.91 137.21
64 41.07 6.90 208.41

128 46.29 6.89 212.96
256 49.90 6.87 194.19

Speedup

Threads

RISC: Open Source Software

• RISC Compiler and Simulator are freely available
– http://www.cecs.uci.edu/~doemer/risc.html#RISC060

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.6.0.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, simd, visual, …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 19-04: CECS_TR_19_04.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc060/

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 38

bash# docker pull ucirvinelecs/risc060
bash# docker run -it ucirvinelecs/risc060
[dockeruser]# cd demodir
[dockeruser]# make test

