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Lecture 20: Overview

• Discrete Event Simulation Semantics
– Discrete Event Simulation

– Parallel Discrete Event Simulation

– Out-of-Order Parallel Discrete Event Simulation

• Formal Execution Semantics
– Time-Interval Formalism

• Recoding Infrastructure for SystemC (RISC)
– Out-of-Order Parallel Simulation for SystemC

– Experimental results
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Discrete Event Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– available in LRM (appendix), good for documentation

 abstract definition (defines a set of valid implementations)

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø
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Discrete Event Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO

E
valuation phase

D
elta C

ycle

T
im

e C
ycle
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Discrete Event Simulation (DES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta cycle

• Time cycle

 Partial temporal order with barriers

• Reference Simulators
– Both SystemC and SpecC

implement cooperative multi-threading

– Example: Execution of four threads

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

th0

Discrete Event Simulation (DES)
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10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1• Specific Example:

Accellera SystemC
Proof-of-Concept Library

 Root Thread
– Elaboration phase

– Scheduling tasks
• Event notifications

• Channel updates

• Delta cycle updates

• Simulation time updates

– SC_METHOD calls
• (not shown)
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Discrete Event Simulation (DES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1 Parallel Simulation!?

• SLDL Execution Semantics
– SystemC prescribes

Cooperative Multi-Threading
• SystemC LRM defines:

“process instances execute without 
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!
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Formal Execution Semantics

• Examples of Formally Defined Semantics
1) Time-interval formalism for SpecC

• Formally defines timed execution semantics
• Covers sequentiality, concurrency, synchronization
• Allows reasoning over execution order, dependencies
Discussed in the following slides!

2) Abstract State Machines (ASM)
• Completely formal execution semantics

• wait, notify, notifyone, par, pipe, try-trap-interrupt
• Operational semantics only (no data types!)

• Abstract models of SpecC and SystemC match
• Abstract models closely match VHDL, Verilog
Not discused in this course
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Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of  par)

• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)

{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)
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• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time

– other statements execute in zero simulation time

behavior B
{ void main(void)

{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0  <=  Tstart(a)  < Tend(a)  <    1
0  <=  Tstart(w) < Tend(w)  =  10

10  <=  Tstart(b)  < Tend(b)  <   11

Formal Execution Semantics
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Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <=   Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f)  < Tend(f)  <=   Tend(B)

behavior B2
{ void main(void)
{ d; e; f; }

};

behavior B1
{ void main(void)
{ a; b; c; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!
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Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <=   Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d)  < Tend(d) <=  Tend(B)

behavior B2
{ void main(void)
{ c; notify e; d; }

};

behavior B1
{ void main(void)
{ a; wait e;   b; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)



EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 7

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 13

• Time-interval formalism
– Atomicity

• Since there is generally no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary

• SpecC 2.0: Channels behave as Monitors!
– A mutex is implicitly contained in each channel instance

– Each channel method implicitly

» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes
– wait and waitfor statements implicitly (and atomically!)

» release an acquired mutex in a channel, and

» re-acquire the mutex before execution resumes

 This easily enables safe communication
without heavy restrictions to the implementation!

Formal Execution Semantics

Discrete Event Simulation (DES)

 Parallel Simulation!?

• Safe Communication in Parallel Execution Context
 Requires protection of inter-thread communication!

– SpecC
• Preemptive multi-threading mandates channels as “monitors”

– SystemC
• Cooperative multi-threading assumes execution “without interruption”

 Protection: Insert a mutex lock into channel instances
• Lock the channel

on thread entry

• Unlock the channel
on thread exit

 Atomic execution
of channel methods

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 14

Channel

Thread 2Thread 1
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• Review: Sequential DES Algorithm
– Active Threads

are managed
in READY queue

– Simulation progress
• Delta cycle

• Time cycle

 Scheduler picks
a single thread
and executes it

Parallel Discrete Event Simulation (PDES)
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Parallel Discrete Event Simulation (PDES)

• Parallel DES Algorithm
– Active threads

are managed
in READY queue

– Simulation progress
• Delta cycle

• Time cycle

 Scheduler
picks N threads
and executes
them in parallel

 N = number
of available
CPU cores
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Parallel Discrete Event Simulation (PDES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers: Synchronous PDES

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and  addressed 

(roll back)

Parallel Discrete Event Simulation (PDES)
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10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• In the same time cycle,

• OR if there are no conflicts!

 Breaks synchronization barrier

 Threads run as soon as possible,
even ahead of time

 Results in even higher speedup!
• [DATE’12], [IEEE TCAD’14]

– Needs compiler support for
data and event conflict analysis!
 Preserves the accuracy

of cause and effect relationship

 Accurate results and simulation time
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Recoding Infrastructure for SystemC (RISC)

• Advanced Parallel SystemC Simulation
– Aggressive PDES on many-core host platforms

– Maximum compliance with IEEE SystemC semantics

• Introduction of a Dedicated SystemC Compiler
– Advanced conflict analysis for safe parallel execution

– Automatic model instrumentation and code generation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-thread safe primitives

– Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)

• Open Source
– Freely available for evaluation and collaboration

– Thanks to Intel Corporation!
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Recoding Infrastructure for SystemC (RISC)

• Out-of-Order PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Combined: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive summary with HybridThreads extension

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 20
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RISC: Dedicated SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler (from LLNL)
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RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source 
transformations

Source:
Lawrence Livermore National Laboratory (LLNL)

RISC: Dedicated SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation
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RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects
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RISC: Dedicated SystemC Compiler
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RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph

2) Parallel access conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 1: Build a Segment Graph

RISC: Dedicated SystemC Compiler

• Segment Graph
– Segment Graph is a directed graph

• Nodes: Segments

Code statements executed
between two scheduling steps

– Expression statements
– Control flow statements (if, while, …)

– Function calls

• Edges: Segment boundaries

 Primitives that trigger scheduler entry
– wait(event)

– wait(time)

 Segment Graph is built automatically by the compiler [TCAD’14]
• From the model source code

• Via Abstract Syntax Tree and Control Flow Graph
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Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph
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Step 2:
Perform Conflict Analysis

RISC: Dedicated SystemC Compiler
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RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Parallel access conflict analysis

3) Model instrumentation

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Instrumentation!

RISC: Compiler and Simulator

• Compiler and Simulator work hand in hand
– Compiler performs conservative static analysis

– Analysis results are passed to the simulator

– Simulator can make safe scheduling decisions quickly

 Automatic Model Instrumentation
 Static analysis results are inserted into the source code
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RISC Simulator

C++
Compiler

Out-of-Order
Parallel

Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

Input Model

Parallel
SystemC
Library

Parallel
C++ Model

Model Instrumentation:
Segment and Instance IDs
Segment Conflict Tables

Time Advance Tables



EECS222: Embedded System Modeling Lecture 20

(c) 2020 R. Doemer 14

• Simulator kernel with Out-of-Order Parallel Scheduler
– Conceptual OoO PDES execution
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RISC: Parallel SystemC Simulator

Issue
Threads

Issue threads…

• truly in parallel and out-of-order

• whenever they are ready

• and have no conflicts!

 Fast conflict table lookup

 Optimized thread-to-core 
mapping

RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding with different frame rates
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Video
30 FPS

2 Audio Channels
38.28 FPS

Multimedia
input

stream

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

1: SC_MODULE(VideoCodec)
2: { sc_port<i_receiver> p1;
3:   sc_port<i_sender>   p2;
4:   …
5:   while(1) {
6:      p1->receive(&inFrm);
7:      outFrm = decode(inFrm);
8:      wait(33330, SC_US);
9:      p2->send(outFrm);

10:   }
11: };

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;
3:   sc_port<i_sender>   p2;
4:   …
5:   while(1) {
6:      p1->receive(&inFrm);
7:      outFrm = decode(inFrm);
8:      wait(26120, SC_US);
9:      p2->send(outFrm);

10:   }
11: };
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RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

2. Reference simulator schedule (DES)
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Speaker
Right
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RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

3. Synchronous parallel schedule (PDES)
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RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

1. Real time schedule: fully parallel

4. Out-of-order parallel schedule (OoO PDES)
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RISC: Experiments and Results

• DVD Player Example
– Parallel video and audio decoding

with different frame rates

• Simulator Run Times
– 4-core Intel® Xeon® CPU at 3.4 GHz

– RISC v0.2.1, Posix-threads
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DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

DES PDES
OoO

PDES

10 sec
stream

Run Time 6.98 s 4.67 s 2.94 s

CPU Load 97% 145% 238%

Speedup 1 x 1.49 x 2.37 x

100 sec
stream

Run Time 68.21 s 45.91 s 28.13 s

CPU Load 100% 149% 251%

Speedup 1 x 1.49 x 2.42 x
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RISC: Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Mandelbrot Set

• Mathematical set of points
in complex plane

– Two-dimensional fractal shape

• High computation load
– Recursive/iterative function

• Embarrassingly parallel
– Parallelism at pixel level

– SystemC Model
• TLM abstraction

• Horizontal image slices

• Highly configurable

• Parallelism parameter
from 1 to 256 slices

EECS222: Embedded System Modeling, Lecture 20 (c) 2020 R. Doemer 33

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

RISC: Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
 Simulated Graphics Demonstration

(when network delays prevent actual graphical demo)
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RISC: Experiments and Results

• Mandelbrot Renderer (Graphics Pipeline Application)
– Simulator run times on 16-core Intel® Xeon® multi-core host

– 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded

– RISC V0.2.1, Posix-threads
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Parallel
Slices

DES PDES OOO PDES

Run 
Time

CPU 
Load

Run 
Time

CPU 
Load

Speedup
Run 
Time

CPU 
Load

Speedup

1 162.13 s 99% 162.06 s 100% 1.00 x 161.90 s 100% 1.00 x
2 162.19 s 99% 96.50 s 168% 1.68 x 96.48 s 168% 1.68 x
4 162.56 s 99% 54.00 s 305% 3.01 x 53.85 s 304% 3.02 x
8 163.10 s 99% 29.89 s 592% 5.46 x 30.05 s 589% 5.43 x

16 164.01 s 99% 19.03 s 1050% 8.62 x 20.08 s 997% 8.17 x
32 165.89 s 99% 11.78 s 2082% 14.08 x 11.99 s 2023% 13.84 x
64 170.32 s 99% 9.79 s 2607% 17.40 x 9.85 s 2608% 17.29 x

128 174.55 s 99% 9.34 s 2793% 18.69 x 9.39 s 2787% 18.59 x
256 185.47 s 100% 8.91 s 2958% 20.82 x 8.90 s 2964% 20.84 x

• Many-Core Target Platform: Intel® Xeon Phi™
– Many Integrated Core (MIC) architecture

• 1 Coprocessor 5110P CPU at 1.052 GHz

• 60 physical cores with 4-way hyper-threading
– Appears as regular Linux host with 240 cores

• Up to 8 lanes available for vector processing

 RISC extended for exploiting 2 types of parallelism
– Out-of-Order PDES: thread-level parallelism

– Intel® compiler SIMD: data-level parallelism

 RISC SIMD Advisor identifies functions with data-level 
parallelism suitable for SIMD vectorization

 DAC ’17 paper:
"Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation”

RISC: Experiments and Results
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PAR MT SIMD MT+SIMD
1
2
4
8

16
32
64

128
256

• Many-Core Target Platform: Intel® Xeon Phi™
– Exploiting thread- and data-level parallelism [DAC’17]

– Mandelbrot renderer (graphics pipeline application)

• Experimental Results:

 Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!
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RISC: Experiments and Results

PAR MT SIMD MT+SIMD
1 1.00
2 1.68
4 3.04
8 5.84

16 11.37
32 21.32
64 41.07

128 46.29
256 49.90

PAR MT SIMD MT+SIMD
1 1.00 6.92
2 1.68 6.92
4 3.04 6.92
8 5.84 6.92

16 11.37 6.92
32 21.32 6.91
64 41.07 6.90

128 46.29 6.89
256 49.90 6.87

PAR MT SIMD MT+SIMD
1 1.00 6.92 6.94
2 1.68 6.92 11.77
4 3.04 6.92 21.19
8 5.84 6.92 40.10

16 11.37 6.92 72.52
32 21.32 6.91 137.21
64 41.07 6.90 208.41

128 46.29 6.89 212.96
256 49.90 6.87 194.19

Speedup

Threads

RISC: Open Source Software

• RISC Compiler and Simulator are freely available
– http://www.cecs.uci.edu/~doemer/risc.html#RISC060

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.6.0.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, simd, visual, …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 19-04: CECS_TR_19_04.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc060/
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bash# docker pull ucirvinelecs/risc060
bash# docker run -it ucirvinelecs/risc060
[dockeruser]# cd demodir
[dockeruser]# make test


