EECS222: Embedded System Modeling

EECS 222:
Embedded System Modeling
Lecture 9

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 9: Overview

* SLDL Semantics
— Concepts and Goals
» Execution and Simulation Semantics
— Motivating Examples (SpecC)
— Motivating Examples (SystemC)
* Simulation Semantics
— Discrete Event Simulation (DES)
— DES Algorithm for SpecC
— DES Algorithm for SystemC

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

SLDL Semantics

» Essential Concepts in Embedded System Models
Behavioral hierarchy
» Concurrency, state transitions, exception handling

Structural hierarchy and connectivity

Synchronization and communication

Timing
» SLDL must support these concepts in syntax and semantics

+ Language semantics define the meaning of constructs
— Execution semantics (for modeling, simulation, and synthesis)

Deterministic vs. non-deterministic behavior

Preemptive vs. non-preemptive concurrency

Atomic operations

Safe synchronization and communication

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 3

SLDL Semantics

» Language Semantics are needed for ...
— System designer
» Description and modeling
— Electronic Design Automation (EDA) tools
» Validation (compilation, simulation, estimation)
« Analysis (verification, property checking)
» Synthesis (implementation)
— Documentation and standardization
* Objective
» Clearly define the execution semantics of the SLDL
* Requirements and Goals

— Precision (no ambiguities)
— Abstraction (no implementation details)
— Formality (enable formal reasoning)
— Simplicity (easy understanding)
EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 4

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

SLDL Semantics

» Defining Artifacts Available (SpecC and SystemC)

— Documentation
» Language Reference Manual (LRM)
= set of rules written in English (somewhat formal)

« Abstract simulation algorithm
= set of valid implementations (abstract, but not general)

— Reference implementation

» SpecC Reference Compiler and Simulator,
SystemC Proof-of-Concept Implementation
= one instance of a valid implementation (very specific)

» Compliance test bench
= set of specific test cases (specific, but incomplete)

— Formal execution semantics
» Time-interval formalism (only exists for SpecC)
= rule-based formalism (mathematical, but incomplete)

« Abstract State Machines

= fully formal approach (algebraic notation, not easy to understand)

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 5

Execution and Simulation Semantics

» Motivating Example 1 (SpecC)
— Given:

behavior B1(int x) behavior B2(int x) behavior B
{
void main(void) void main(void) int x;
{ { Bl b1(x);
X = 5; X = 63 B2 b2(x);
3 3
}s }; void main(void)
{
b1;
b2;
¥
}:

— What is the value of x after the execution of B?
— Answer: x =6

EECS222: Embedded System Modeling, Lecture 9

(c) 2020 R. Doemer 6

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

Execution and Simulation Semantics

» Motivating Example 2 (SpecC)

— Given:

behavior B1(int x) behavior B2(int x) behavior B
{
void main(void) void main(void) int x;
{ { Bl b1(x);
X = 53 X = 6; B2 b2(x);
} }
}: }; void main(void)
par{bl; b2;}
3
}:

— What is the value of x after the execution of B?

— Answer: The model is non-deterministic
(x may be 5, or 6, or any other value!)

EECS222: Embedded System Modeling, Lecture 9

(c) 2020 R. Doemer 7

Execution and Simulation Semantics

» Motivating Example 3 (SpecC)
— Given:

behavior B1(int x) behavior B2(int x) behavior B
{ { {
void main(void) void main(void) int x;
{ Bl b1(x);
waitfor 10; X = 6; B2 b2(x);
x = 5; b
3} }: void main(void)
}: {
par{bl; b2;}
3
}:

— What is the value of x after the execution of B?

— Answer: x=5

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

» Motivating Example 4 (SpecC)

Execution and Simulation Semantics

waitfor 10;
X = 53
3
}:

X = 63
3
3

— Given:
behavior B1(int x) behavior B2(int x) behavior B
{
void main(void) void main(void) int x;
Bl b1(x);
waitfor 10; B2 b2(x);

void main(void)

par{bl; b2;}

3
}s

— What is the value of x after the execution of B?

— Answer: The model is non-deterministic
(x may be 5, or 6, or any other value!)

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 9

Execution and Simulation Semantics

» Motivating Example 5 (SpecC)
— Given:

behavior B1(behavior B2(behavior B
int x, event e) int x, event e) {
int x;
void main(void) void main(void) event e;
{ { Bl bl(x,e);
X = 5; wait e; B2 b2(x,e);
notify e; X = 6;
3} } void main(void)
}: }:
par{bl; b2;}
3
}:

— What is the value of x after the execution of B?

— Answer: x =6

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 10

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

» Motivating Example 6 (SpecC)

Execution and Simulation Semantics

— Given:
behavior B1(behavior B2(behavior B
int x, event e) int x, event e) {
int x;
void main(void) void main(void) event e;
{ { BL bl(x,e);
notify e; wait e; B2 b2(x,e);
X = 5; X = 6;
¥ T void main(void)
}; };
par{bl; b2;}
3
}:

— What is the value of x after the execution of B?
— Answer: x=6

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 1"

Execution and Simulation Semantics

» Motivating Example 7 (SpecC)
— Given:

behavior B1(behavior B2(behavior B
int x, event e) int x, event e) {
int x;
void main(void) void main(void) event e;
{ { Bl bl(x,e);
waitfor 10; wait e; B2 b2(x,e);
X = 5; X = 6;
notify e; } void main(void)
¥ };
}: par{bl; b2;}
3
}:

— What is the value of x after the execution of B?

— Answer: x =6

EECS222: Embedded System Modeling, Lecture 9

(c) 2020 R. Doemer

12

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

Execution and Simulation Semantics

» Motivating Example 8 (SpecC)
— Given:

behavior B1(behavior B2(behavior B
int x, event e) int x, event e) {
int x;
void main(void) void main(void) event e;
{ { B1 bl(x,e);
X = 53 waitfor 10; B2 b2(x,e);
notify e; wait e;
3} X = 6; void main(void)
}: 3 {
}; par{bl; b2;}
3
}:

— What is the value of x after the execution of B?

— Answer: B never terminates
(the event is lost!)

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 13

Execution and Simulation Semantics

« Motivating Example 9: SystemC Difference

— Given:
SC_MODULE(Top) void Top::thl(void) void Top::th2(void)
{ { {
int x; X = 5; X = 6;
}: }:

void thi(void);
void th2(void);

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2) ;
H
T

— Answer:

X may have the value 5 or 6,
but not any other value!

EECS222: Embedded System Modeling, Lecture 9

— What is the value of x at the end of simulation?
The model is non-deterministic!

(c) 2020 R. Doemer 14

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

Execution and Simulation Semantics

» Motivating Example 10: SystemC Difference

— Given:
SC_MODULE(Top)

void Top::thl(void) void Top::th2(void)

int x; X = 5; wait(e);
sc_event e; e.notify(Q; X = 6;
void thl(void); }; };

void th2(void);

SC_CTOR(Top)
{ SC_THREAD(thl);
SC_THREAD(th2);

}
¥
— What is the value of x at the end of simulation?
— Answer: The model is non-deterministic!

X may have the value 5 or 6.

The immediate notification may get lost!

(c) 2020 R. Doemer 15

EECS222: Embedded System Modeling, Lecture 9

Execution and Simulation Semantics

« Motivating Example 11: SystemC Difference

— Given:
SC_MODULE(Top) void Top::thl(void) void Top::th2(void)
{ { {
int x; X = 5; wait(e);
sc_event e; e.notify(X = 6;
void thi(void); SC_ZERO_TIME); ¥}
void th2(void); ¥

SC_CTOR(Top)
{ SC_THREAD(th1);
SC_THREAD(th2) ;
H
T

— Answer:

Delta notification is safe!

EECS222: Embedded System Modeling, Lecture 9

— What is the value of x at the end of simulation?
X = 6

(c) 2020 R. Doemer 16

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

Simulation Semantics

» Discrete Event Simulation (DES) Algorithm for SpecC
— available in LRM (appendix), good for documentation
= abstract definition (defines a set of valid implementations)
= not general (possibly incomplete)
+ Definitions:
— At any time, each thread t is in one of the following sets:
* READY: set of threads ready to execute (initially root thread)

» WAIT: set of threads suspended by wait (initially &)
+ WAITFOR: set of threads suspended by waitfor (initially &)

— Notified events are stored in a set N
e notify el adds eventelto N
e wait el will wakeup when elisin N
» Consumption of event e means event e is taken out of N
» Expiration of notified events means N is set to &

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 17

Simulation Semantics

» Discrete Event Simulation (DES) Algorithm for SpecC
Select thread t<READY, execute t e

Add notified events to N
Move teREADY to WAIT
Move teREADY to WAITFOR

| Move all te WAIT waiting +for events ecN to READY |
| Set N=0@ |

~sEHDY=p-"°

YES
[Update simulation time, move earliest te WAITFOR to READY |

EECS222: Embedded System Modeling, Le (c) 2020 R. Doemer 18

(c) 2020 R. Doemer

Lecture 9

EECS222: Embedded System Modeling

Simulation Semantics

» Discrete Event Simulation (DES) Algorithm for SpecC
— Conforms to general Discrete Event (DE) Simulation
« utilizes delta-cycle mechanism (i.e. inner event loop)
 closely matches execution semantics of other languages
— SystemC
— VHDL
— Verilog
— Features
« clearly specifies the simulation semantics
* is easy to understand
« is straight-forward to implement
— Generality
* is one valid implementation of the semantics
« other valid implementations may exist as well

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 19

Simulation Semantics

» Discrete Event Simulation (DES) Algorithm for SystemC

- - - b
Elaboration / Simulation Callbacks ‘,\Dzw.‘\

(Instantiation

|

Elaboration 3 sc_start()
l —* before_end_of_elaboration()

~ — end_of_elaboration()

e t — start_of_simulation()

Every process without j

| g K
' lifiElETen Flizss (dont_intialize() runs once

'
Simulation < ! !
\ Scheduler B

sc_stop()

end_of_simulation()

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 20

(c) 2020 R. Doemer

Lecture 9

10

EECS222: Embedded System Modeling

Simulation Semantics

» Discrete Event Simulation (DES) Algorithm for SystemC

The Scheduler in Detail

THURSDAY 15
g TRAINING DAY

se_startf) ——_
. Initialization
 oreasepocesce) AR N st g
' iy gL -~

! sensitive ," ‘erreemm. | .-

' natify(0),*) Update W

& oA l{U}empty

1 A
i . !
! Delta notifications {D} f Empty {D} into {R}
1 i
! i | {R} empty

I

\ d } efpty

i notify(>0)," sc_stop(}
ll ;’ 1

\ /! Advance time

1 i

n‘ 1
fime from {T} into
{R} 46

EECS222: Embedded System Modeling, Lecture 9 (c) 2020 R. Doemer 21

(c) 2020 R. Doemer

Lecture 9

11

