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I. INTRODUCTION design exists for any constellation , one can use that particular constel-
lation to transmit with a full-rate and achieve maximum diversity and

The idea of applying the theory @rthogonal Designsin Space-
PPYINg Y g g P gimple maximum-likelihood decoding.

Time Codingwas introduced in [1], [2]. The purpose was to creat . ) .
codes that provide fukpatial diversitywith maximal possiblérans- fol:QVEZ'_S work, we only define the real pseudo-orthogonal designs as
mission rateR (preferablyR = 1) while providing a linear decod- - . . .

ing complexity. These designs have remarkably simple maximu _Definition 1: Let .S be an arbitrary subset @R with at least 3 dif-
likelihood decoding algorithms via linear processing at the receiv%.rem’ nonzero elements, s, ands. A real Pseudo-Orthogonal

It was also shown that very few real orthogonal designs exist that p esign of o_rdern IS ann-square matrbG \.N'th. polynomial entrl_es
vide full diversity and full rate. Assuming to be the number of the of degree 1 im Varl.ab|.eS(II1,£E2, ++, o, SAliSfying the real Hurwitz-
transmit antennas, the 3 classical orthogonal designs for2, 4 and 8 Radon (HR) equation:

are the only existing square real orthogonal designs. The authors of [1] GTG =2+ a2+ +a2),
also introduce the concept Gomplex Orthogonal Desigrad prove
that the case for complex orthogonal designs is even more stringdat.all possible values af;, zs, - - -, z, € S, whereGT is the trans-

The Alamoutidesign forn = 2 would turn out to be the only complex pose of G and,, is then x n identity matrix.

square orthogonal design [1]. Relaxing some of the conditions sucHf G is a real orthogonal design of ordemwe may write

as the rate would allow the authors to construct some new codes. The

concept of generalized orthogonal designs was introduced that would G = Ay + Aoz + -+ Ann.

provide codes for any _possible valuerofinder the trade-off of having Then theH R-equation is equivalent to

R < 1/2. The estimation of? < 1/2 would turn out not to be sharp

and the authors were able to construct codes for sporadic values ofS «; <, (A7 A+ A] A)wizj+S1<icn (AT Ai— 1)z} = 0. (1)
having higher rates. For instance, for= 3 andn = 4 codes of rate

R = 3/4 were constructed. Since the introduction of space-time blodi'® main idea in studying the orthogonal designs relies on the fact that
codes, there has been a lot of effort in designing higher rate codes, gh& latter equation can only hold if all coefficients are simultaneously
[3], [4]. The main conclusions are as follows. The maximum symb&dual to 0. Since;’s are simply indeterminate variables assuming any
transmission rate of a space-time block code from complex orthogoR&ssible real number, Equation (1) results in:

designs is only 3/4 for three and four transmit antennas [3]. It meansTheorem 1:LetG = Aizy + Asws + - - - 4+ Anzn be areal square

that it is impossible to improve the original orthogonal designs pr&¥thogonal design. Let also define n-1 matriéas Bs, - - -, Bn—1 Via
vided in [1] for three and four transmit antennas. Also, there are orfije relationB; = A; 1 A7, fori = 1,2,---,n — 1. Then such &
few examples of codes with rate higher than 1/2 for more than foGan only existif the family{ B:, By, - - -, B, -1 } build a so calleHR-
transmit antennas [4]. An orthogonal design is defined for any arfigmily of orthogonal matrices, i.e. matrices that satisfy the following
trary indeterminate variables , zs, - - - , z.. The theory of orthogonal conditions:

designs [5] and its generalization [1] provide designs that are orthog-1) Bi’s are all orthogonal

onal for any real or complex values of, zs, - -, z,. However, in  2) B = —1I,

practice, in a communication system,, 2, - - - , ¢, are members of 3) B:B; = —B;B;

a constellation that has a finite number of signals instead of the real Rsoof: For the details of the proof we refer to [5] and [1].
complex) numbers with infinite number of possibilities. For example, In the following we will try to find suitable finite setS over which
when the transmitter uses QPSK constellatignzs, - - -, z,, can take we allow thez; to range in the hope to satisfy Equation (1) without
one of the four possible QPSK symbols. From the results providedriquiring all the coefficients to be 0. The following theorem will settle
[1] and the following studies in the literature, it is not clear if therghis problem for the real pseudo orthogonal designs. It will turn out
exists designs that are orthogonal only for a finite set of constellatitrat for the real case no choice Sfwill provide us with any new
symbols. In this work, we study the possibility of such designs bsult.
definingPseudo-Orthogonal Desigribat are defined on a finite sub- Theorem 2:For any arbitrary subsef of the reals having at least
set of real numbers. The case of complex pseudo-orthogonal desigri®n-zero elements;, s> andss, the 3 standard square orthogonal
will be handled in future. designs fom = 2, 4, 8 are the only real pseudo orthogonal designs.

In the following we will shortly revisit the orthogonal designs and But before we prove the theorem, we need to remark the following
review their connection with space-time coding and will introduce th&bout the ses:
concept of Pseudo-Orthogonal Designs. 1) We do not consider the case whéfés a singleton. Since firstly
it would be less attractive from a coding theoretical point of
view and secondly thé R-equation remains invariant under re-

Il. PSEUDOORTHOGONAL DESIGNS . - S ) )
scaling (simultaneous multiplication of all variables with a con-

An orthogonal design is defined for any arbitrary indeterminate vari-  stant), therefore the case 6fbeing a singleton is equivalent to
ableszi, 2, - -, z,. In this section, we define pseudo-orthogonal de-  all variablesz;'s being equal to 1. In this case our orthogonal
signs that are defined for indeterminate variableses, - - - , z», that design becomes a scalar matdxsatisfying the equation

are from a finite set of numbers. This finite set of numbers can be any
constellation for example PSK or QAM. If such a pseudo-orthogonal ATA =nlI,.



Such a matrix is referred to asladamardmatrix in the lit-  point of L. Then the intersection df with P M will satisfy the equa-
erature and is extensively studied in [5]. It is shown that sudion:

a matrix can only exist ifi = 1,2 or n = 4k for some natural 2 2 2 _
numberk. Therefore we will only focus on cases where= 4k. Ar(vat+wi)” + Aalvgt + we)” + -+ + An(vnt + wn)” = 0.

2) As mentioned above since rescaling leavesffe-equation in-  This quadratic equation (in variabfghas at most 2 solutions. Know-
variant we may a|WayS assume without loss of genera”ty th&tg that L intersectsP M at least 3 times, the equation can only hold
1€ 8. if all its coefficients equal 0. Therefore it follows:

3) We can always assume thatZ S. Since otherwise let alt;’s <V, V>=<W,V >=< W,W >=0.
except for oneg; for instance, to be equal to 0. Then from
Equation (1) it follows thamjrAj — I = 0 for any arbitraryj.
Let also allz;’s be 0 except for two specific; andz,. Then
from the same equation it follows thatt} A; + AT Ax) = 0
for any arbitrary values fof andk. Then according to Theorem
1 any pseudo orthogonal design for asiycontaining 0 will be
an orthogonal design.

Considering that once all the coefficients are 0, the equation will hold
for any possible value of proves thaf. C PM. O

Lete; := (0,---,0,1,0,---,0) be the standard” unit vector
andW := (s1,s1,---,s1)7 € S™. Furthermore lef; be the straight
line having the equationX := te; + W. Then each; contains at
least 3 points o6™

4) Unlike the case of orthogonal designs, maximum diversity is not Yii = (81,81, ,81, " sl)T,
guaranteed for pseudo orthogonal designs. The result shows Yo = (51,80, 82,5 )T
that, under the conditions of the theorem, even non full-rank n2 AL r

pseudo orthogonal designs do not exist. Yig = (s1,81,"+,83,""",81) .
Proof of Theorem 2: Let us focus on a fixed entryX, [), for in- ~ Let us also define; := Pe; andW'’ := PW. Considering thaP
stance), of the matriced] A; + AT A; andA] A; — I, in Equation is an orthogonal transformation, the imagelofunder P, PL;, that

(1). Let is another line will intersecP M in more than 2 points (the images of

. . . Yi1,Yi2,Y: s underP). Then according to the lemma:

2a3; = (k,l) — ent Aj Aj + A5 A,
aj = (k1) = entry of (A; A; + A Ai) <é e >=<W e >=< W' W' >=0. )
and For an arbitrary choice afandj (i # j) let L; ; be the straight line
kl T . B

ai; = (k1) —entry of (A; Ai —I). passing through the poifit +(s2—s1 )e; and parallel ta;. ThenL; ;

Then from Equation (1) it follows that will contain 3 points ofS™. The linePL; ; will contain the images of

these 3 points (undd?) and will satisfy the equation:

21<¢<j<nafl'3?i9€j + Sicicnaliz? = 0. ’ ’ ’
= = J : - = XZ:PW+(82—81)P6i+tP€j:W +(82—S1)6i+t€j.

Defining the symmetric matrix*" := (a}j) will result in: According to the lemma it follows:
xXTaMx <o, ) < W'+ (s2 — s1)ei, e >=0.
where X := (z1,22,---,x,)". Then theH R-equation would be Using Equation (3) it follows that for all  j:

equivalent to satisfying Equation (2) for all possible valueXof S™ <ej,e; >=0. 4)

: kl : 2 H 2 4
for all mgtncesA . We_wnll haven _equatlons of type (2) fon dlfl- Combining (3) and (4) it follows that for all j:
ferentA*"'s. The proof is complete if we prove that for any sudf,

Akl = 0. Since this will prove that our pseudo orthogonal design sat- <ej, e >=0. (5)
isfies Equation (1) and will turn out to be an orthogonal design.  sinceP is an orthogonal transformation, the vectefs- - -, e/, gener-
Claim: A™ = 0. ate the whole spaci®™. From Equation (5) it follows that the whole

Proof of the Claim: Since A*' is symmetric, there exists an orthog-spacelR™ is A-isotropic, therefore\ = 0 or consequentlyt*! = 0.
onal matrix P such thatP” A* P = diag(A1,2,-+-,An) = A, This proves the claim and the theorem.

where\;, A2, - - -, A, are the eigenvalues (all real) @f*!. The ma-

trix A defines a symmetric bilinear form aR™, which can be non- IIl. CONCLUSIONS

singular. Let) be the set of all isotropic vectors (vectors of len@fh  \We have introduced the concept of Pseudo Orthogonal Designs. A
with respect ta), i.e. the set of all points idz" satisfying Equation pseudo orthogonal design is defined for a finite set of elements instead
(2). Then under, M gets transferred intolaypercone of all real or complex numbers. We have proved that a real pseudo
orthogonal design does not exist. The case of complex pseudo orthog-

—— - T s 2 2 e 2 = . .
PM = {(z1, 22, -, 2n)" € BT+ 0wy 4o dnan = 0}y designs will be handled later.

The following lemma is the crucial point of the proof:
Lemma 1: If a straight lineL intersectsP M in more than 2 points,
thenL C PM. In addition if L has the equatioX := Vit + W, for
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