
1

Concentration Theorem for Tripartite LDPC

Codes

Peyman Meshkat Hamid Jafarkhani

Center for Pervasive Communications and Computing

Department of Elec. Eng. & Computer Science

University of California, Irvine

Irvine, CA 92697

pmeshkat@uci.edu hamidj@uci.edu

September 22, 2003 DRAFT

2

Abstract

We present the framework of tripartite LDPC codes. In contrast with previous works on LDPC

codes, in this framework we consider the case where a channel output is affected by more than a single

coded bit. Tripartite LPDC framework is general enough to cover the cases of M-ary modulation and

MIMO channels. We show that concentration theorem which was previously proved for the case of

binary erasure channel by Luby et al and later was generalized to binary-input memory-less channels

by Richardson et. al. holds in our more general framework as well. Concentration Theorem is essential

in designing Irregular LDPC codes and calculating the capacity of message passing decoding. We

also present the specific equations for calculating the messages used in decoding algorithm for M-ary

modulations and MIMO channels.

Index Terms

LDPC codes, Tripartite LDPC, Concentration theorem, M-ary modulation, Space-time codes, MIMO.

I. INTRODUCTION

Irregular LDPC codes are the best known codes (in terms of coding gain and bit error

probability) for simple modulation schemes and binary input memory-less channels such as

Binary Input Additive White Gaussian Noise (BIAWGN) or discrete Binary Symmetric Channels

(BSC). Irregular LDPC codes are in fact modified versions of the original (regular) LDPC codes

introduced by Gallager in 1961 [1]. Despite their excellent performance even in their original

(regular) version, these codes “were largely neglected” up until the “phenomenal success of

turbo codes” [2]. Irregular LDPC codes were introduced in [3] for binary erasure channels and

later in [4] for more general binary input channels. The performance of irregular LDPC codes

on binary-input memory-less AWGN channel was even better than turbo codes: less than 0.13

dB away from the ultimate theoretical limit of Shannon capacity at bit-error rate of 10−6 as

reported in [4]. This remarkable performance has turned LDPC codes into a highly active area

of research, however, little is known about the design criteria and performance of these codes for

band-width efficient (M-ary) modulation schemes and space-time coding scenarios with multiple

transmit and multiple receive antennas.

With the advent of turbo-codes in 1993 [5], several researchers began to explore the possibili-

ties of designing codes and their corresponding iterative decoding algorithms based on graphical

September 22, 2003 DRAFT

3

representation such as Bayesian Networks and Belief Propagation algorithm [6]. Early notable

examples of these works include Wiberg [7] , Mac-Kay and McEliece [8] and Kschischang and

Frey [9], [10]. This wave of research resulted in recognition of a new class of codes with the

following two characteristics. First, they are represented in (sometimes equivalent) graph-based

frameworks such as Bayesian networks [6] or factor graphs [10]. Second, they can be decoded by

(usually iterative) message passing decoding algorithms such as belief propagation [6] or sum-

product algorithm [10]. Turbo codes, serial concatenation of convolutional codes [11], LDPC

codes [1], MacKay-Niel (MN) codes [12] and Read-Accumulate (RA) codes [13] belong to

this class of codes. This work is another example where a graphical representation is used for

defining a coding/modulation and decoding/detection framework.

LDPC codes can be represented by a bipartite graph. The graph consists of two kind of nodes:

variable nodes and check nodes. Variable nodes represent bits in a codeword and check nodes

represent parity check equations that should be satisfied in a valid codeword. A variable node

is connected to a given check node if and only if the bit corresponding to that variable nodes

takes part in the parity check equation corresponding to the given check nodes. The set of nodes

connected to a given node are called the neighbors of that node.

The code (set of valid codewords) consists of all codewords for which all the parity check

equations are satisfied. The iterative decoding is performed by passing “messages” in both

directions between check nodes and variable nodes. From the noisy observation at the output

of the channel, we can calculate an initial estimate for each coded bit. These initial estimates

are the initial set of variable node to check node messages that are sent to the check nodes. We

represent variable nodes to check node messages by ψv→c. Once a check node receives ψv→c

messages from its neighboring variable node, new updated estimates for each variable nodes can

be calculated. This new estimate would be the check node to variable node message represented

by ψv→c. Now that we have updated estimates for each variable node from different neighboring

check nodes we can again calculate new estimates for the given variable node. This would be

the updated variable to check node message. This procedure can be iteratively repeated until the

hard decisions on the variable nodes satisfy all the parity check equations or until a maximum

number of iterations has been reached. In the former case, a codeword is declared as the decoding

decision and in the latter case a decoding failure is declared.

Implicit in the above decoding algorithm, is the assumption that the different message received

September 22, 2003 DRAFT

4

by a variable node or check node are functions of independent random variables. To elaborate

more, consider a message from a check node to a variable node in iteration l. This message

is a function of all messages from all other variable nodes connected to that check nodes.

These latter messages are in turn functions of messages from all other check nodes connected

to those variable nodes and so on. We can construct a graph in the form of an expanding tree

which represents the dependencies between the messages sent during the lth iteration of message

passing decoding algorithm. This graph is known as a decoding neighborhood [2]. The nodes in a

decoding neighborhood are those nodes whose sent messages are used in calculating the message

that is sent on the top link of the decoding neighborhood graph. A decoding neighborhood is

tree-like or cycle-free when there is no repeated node in the the neighborhood. As long as the

neighborhood is cycle-free the implicit independence assumption about the messages is a correct

assumption.

In the original (regular) version of LDPC codes each variable node is connected to a fixed

number of check nodes. This fixed number is the degree of variable nodes represented by dv.

Similarly, each check node is connected to a fixed number of variable nodes and this fixed

number is the degree of check nodes represented by dc. Authors of [3] showed that by relaxing

this fixed dv and dc assumption one can design LDPC codes with superior coding performance.

These codes were called irregular LDPC codes as opposed to the classic regular case where the

degree of variable nodes and check nodes are fixed. Irregular codes were first designed for binary

erasure channel in [3] and were generalized to the case of an arbitrary binary input symmetric

output channel in [4]. Irregular LDPC codes were designed by finding a probability distribution

on the degree of variable nodes and a probability distribution on the degree of check nodes which

optimize the average performance according to that distribution. An important question arises at

this point. Assume we have a probability distribution that optimizes the average performance of

the codes selected from that distribution. What is the guarantee that an individual code which

is randomly selected according to that given optimized distribution has a decoding behavior

close to the average? The answer is given by an important theorem known as “Concentration

Theorem” [2].

Concentration theorem states that for a large enough block size n, the performance of a

randomly chosen LDPC code is close to the expected value of the decoding behavior of all codes

in the ensemble with a probability that approaches to unity exponentially fast in n. Furthermore,

September 22, 2003 DRAFT

5

this expected value converges to the expected value of decoding behavior under the assumption

that the corresponding decoding neighborhood is tree-like. The importance of this theorem is

that it allows us to find the code parameters (degree distribution on check nodes and variable

nodes) that optimize the average performance of the codes in ensemble and be “almost sure”

that this design criterion is meaningful for a randomly chosen sample from the ensemble of

LDPC codes. The validity of the design method of “density evolution” [4] which led to the

design of phenomenally successful irregular LDPC codes for binary-input channels is based on

the validity of the concentration theorem [2], [4].

An essential assumption in previous works in design of irregular LDPC codes is the assumption

of a binary-input channel. This assumption implies that each noisy value received at the output of

the channels is connected to only a single variable node. It is of great interest to design irregular

LDPC codes for the case of M-ary input and MIMO channels, where the above mentioned

assumption does not hold.

In this work, we introduce the framework of tripartite LDPC codes. In this framework a noisy

received value from the output of the channel can be connected to multiple variable nodes in the

graph. We recognize the output of the channel as a third set of nodes in the graph of the code. We

refer to these nodes as symbol nodes. The graph representing our framework is a tripartite graph

rather than a bipartite graph and hence the name tripartite LDPC framework. Our framework is

general enough to cover LDPC codes used with M-ary modulations and LDPC codes used over

multiple-input and multiple-output (MIMO) channels.

Concentration theorem, which was stated and proved for the case of Binary Erasure Channel

(BEC) in [3] and later for the more general case of binary-input symmetric-output channels

in [2], is a necessary stepping stone for validity of the design irregular LDPC codes based on

finding degree distributions on variable nodes and check nodes. In this paper we state and prove

the concentration theorem for the tripartite framework.

The organization of the paper is given in the following. In Section II we introduce the

framework of tripartite LDPC code and explain our message passing decoding algorithm for

the case of tripartite graph. In Section III we state and prove the concentration theorem for the

tripartite framework. Tripartite framework can cover M-ary modulation and MIMO channels

as special cases. In Section IV we show that how M-ary modulation and MIMO channel

transmission scenario can be considered as special cases in this framework and we derive the

September 22, 2003 DRAFT

6

message passing decoding algorithms for these special cases. In Section V we provide a summary

and mention some possible areas for further research.

II. TRIPARTITE LDPC FRAMEWORK

In this section we introduce the framework of tripartite LDPC codes. This framework is a

unifying structure for LDPC codes used in scenarios involving channel models and modulation

schemes that are more general than just binary modulation over a memoryless single-input and

single-output channel.

As we mentioned before, the standard decoding for an LDPC code consists of passing messages

between a set of variable nodes and a set of check nodes. These two sets of nodes constitute a

bipartite graph corresponding to a given LDPC code. Strictly speaking, however, there exist a

third set of nodes which corresponds to the (noisy) received information from the channel. For the

case of a binary-input memory-less channel each received output from the channel corresponds

to a single transmitted (coded) bit. This means that in the graph, the nodes corresponding to

channel outputs are of degree one (i.e. connected to only one neighboring node). In the message

passing algorithms such as belief propagation [6] or sum-product algorithm [10], a node with

degree one sends messages only once during the initialization. This is due to the fact that in

these algorithms, a message that a node A sends to a neighboring node B is a function of the

information that node A has received from all its neighboring nodes excluding node B. This

concept in turbo code literature is known an “extrinsic information” principal. As a result of this,

a message transmitted from a node with degree one remains the same and will not be updated

in each iteration of the decoding algorithm. Therefore, a node with degree one takes part only

in the initialization phase of the iterative decoding algorithm. The “third set of nodes”, that was

mentioned in the above, therefore, do not send updated messages during consecutive iterations

and in effect the message passing is performed over the nodes of a bipartite graph.

We consider a case that transmitted symbols depend on more than one of the coded bits

(variable nodes). We would like to emphasize that in our framework the LDPC code is still

a binary code, however more than one coded bit determine the symbol (or group of symbols)

which are transmitted over the channel. This can be extended to the case of non-binary codes

as well, however, we do not consider that case in this paper.

Figure 1 shows two graphs. The left graph corresponds to a “classic” LDPC code setup

September 22, 2003 DRAFT

7

with a binary modulation on a memory-less channel. For the reasons explained in the above

discussion, we refer to this case as bipartite LDPC code. The right graph corresponds to our

configuration of tripartite LDPC codes. The white circles correspond to the variable nodes and

squares correspond to check nodes. The black circles correspond to the output of the channel.

In the following discussion we sometimes call a node which corresponds to a variable a v-node,

a node corresponding to a check node, a c-node and finally a node corresponding to a symbol

node an s-node. For the case of a binary modulation each s-node is connected to a single v-ndoe.

This is in contrast with the tripartite case (right graph) where each s-node is connected to several

v-nodes. This is a crucial difference which results in a more sophisticated decoding algorithm

and a more sophisticated decoding (tree-like) neighborhood.

The iterative decoding in a tripartite setting involves a more diverse set of messages compared

to the bipartite counterpart. In the “classic” or bipartite case, the message passing algorithm for

decoding consists of sending two types of messages: variable-node to check-node messages and

check-node to variable-node message. In the tripartite case we have two more types of messages:

symbol-node to variable-node and variable-node to symbol-node messages as well. We use the

notation ψs→v for s-node to v-node messages, ψv→c for v-node to c-node messages, ψc→v for

c-node to v-node messages and ψv→s for v-node to s-node messages.

The iterative message passing algorithm that we propose for tripartite LDPC code starts with an

initialization phase. The initialization includes sending messages from symbol nodes to variable

nodes and initializing ψc→v messages to a equal probabilities for the receiving v-node being a

“1” or a “0”.

At the beginning of each iteration from the previous ψs→v and ψc→v (i.e. the messages received

by v-nodes) we calculate a hard decision on v-nodes. If these hard decisions satisfy all parity

check equations the current decisions are declared as the output of the decoder. Otherwise, first

we check that maximum number of iterations is not reached. If this is the case the decoding stops

and decoding failure is declared. Next, v-node to c-node ψv→c messages are calculated and sent

to c-nodes and then c-nodes calculate the ψv→c messages in return. At this point the tripartite

decoding would be different from bipartite decoding. In the bipartite case, the messages from

symbol nodes are not updated anymore. In the tripartite case, we update the information that

we obtain from symbols by first sending our new estimates of the variable node to the symbol

nodes. Next, a given variable node connected to a symbol node receives a new estimate from

September 22, 2003 DRAFT

8

the symbol node based on the updated estimates for the rest of the variable nodes connected

to that symbol node. Note that for the case of bipartite LDPC codes “the rest of the variable

nodes connected to that symbol node” is an empty set. Therefore, in the bipartite case the s-node

to v-node messages remain constant. The ending of the current iteration is marked by sending

variable to check messages.

A more formal description of the tripartite decoding algorithm is given in the following:

Tripartite Decoding Algorithm

{0} Initialization:

Calculate ψs→v

Initialize ψc→v.

Set the number of iterations to zero.

{1} (Start of Iteration:)

Make a hard decision on v-nodes.

{2} If the hard decision satisfies parity check equations declare the codeword, STOP.

{3} Increase the number of iterations.

{4} If the maximum number of iteration is reached, declare decoding failure, STOP.

{5} Calculate ψv→c.

{6} Calculate ψc→v.

{7} Calculate ψv→s.

{8} Calculate ψs→v.

{9} Goto {1}.
The above described message passing algorithm results in a decoding neighborhood shown

in Figure 2. Each new iteration adds four more tiers to the decoding neighborhood graph. As

we explained in the introduction, the nodes in a decoding neighborhood are those nodes whose

sent messages are used in calculating the message that is sent on the top link of the decoding

neighborhood graph. As we see in the next section, this decoding neighborhood is used in proving

the concentration theorem for tripartite framework.

III. CONCENTRATION THEOREM FOR TRIPARTITE FRAMEWORK

In this Section we state and prove the “Concentration Theorem” for the case of tripartite

LDPC codes. This theorem was first stated and proved in [3] for the case of a binary erasure

September 22, 2003 DRAFT

9

channel and was generalized to the case of an arbitrary binary-input channel in [2]. Here we

further generalize the theorem to the tripartite LDPC framework.

In order to prove the concentration theorem, we should find an upper bound on the probability

of the event that a given decoding neighborhood contains cycles. In the following, dv represents

the degree of variable nodes, dc represents the degree of check nodes and ds the degree of symbol

nodes. For the decoding neighborhood given in Figure 2 we use Cl for the number of check

nodes till iteration l and Ml for the number of variable nodes in the decoding neighborhood

till iteration l. We define the random variable Z to be the number of incorrect messages among

all ndv variable-to-check messages sent out in the lth iteration. Note that although we use a

notation almost identical to that of [2] in stating and proving the concentration theorem, the

variables and parameters should be interpreted in the context of the framework that we have

established for the case of a tripartite LDPC code. For example in the case of bipartite LDPC,

the random variable Z defined in the above corresponds to the number of incorrect messages

on the top most edge of a decoding neighborhood graph with depth equal to 2l + 1 (see [2]).

As discussed in Section II, the corresponding graph for the case of tripartite would be 4l + 2.

We define p to be the expected value of incorrect messages passed on lth iteration of decoding

on a variable-to-check edge given that the corresponding decoding neighborhood of that edge

is tree-like. Using the above the definition we state the “concentration theorem” for tripartite

LDPC codes:

Concentration Theorem for tripartite LDPC codes: Over the probability space of all graphs

Cn(dv, dc, ds) and channel realizations let Z be the number of incorrect messages passed at

iteration l. Let p be the expected number of incorrect messages passed along an edge whose

unique neighboring variable-to-symbol edge has a decoding neighborhood of depth 4 l at iteration

l. Then, there exist positive constants β = β(dv, dc, ds, l) and γ = γ(dv, dc, ds, l) such that:

• Concentration Around Expected Value: For any ε > 0 we have:

Pr{|Z − E[Z]| > ndvε/2} ≤ 2e−βε2n. (1)

• Convergence to Cycle-Free Case: For any ε > 0 and n > 2γ
ε

we have:

|E[Z] − ndvp| < ndvε/2. (2)

• Concentration Around Cycle-Free Case: For any ε > 0 and n > 2γ
ε

we have

Pr{|Z − ndvp| > ndvε ≤ 2e−βε2n}. (3)

September 22, 2003 DRAFT

10

Proof: The statement of the theorem above is almost a verbatim copy of the Theorem 2 of [2].

The only distinction is that the code ensemble Cn and the constants γ and subsequently β

are functions of ds as well as dc and dv. As mentioned before the parameter ds represents the

degree of the s-nodes. For the case of the binary input channel, we have ds = 1. Therefore,

the expressions that we find for γ and β can be considered as generalized versions of those

corresponding to the binary input channel.

Similar to the case of binary input channel, (3) follows from (1) and (2). To see this, assume

we have shown that (2) holds. Now if the complement of the event in (1) has happened, by

triangular inequality, one can deduce that the complement of event in (3) has happened as well.

Therefore the event in (3) is a subset of the event in (1). Thus, the probability of the event in (3)

is less than the probability of the event in (1) which means that (3) follows from (1) and (2).

We start by proving (2). The first step would be proving that there exists a constant γ(dv, dc, ds, l)

so that the probability that the decoding neighborhood of a given variable to check edge is not

tree-like (i.e. it contains cycles) is upper-bounded by γ
n
. This step of the proof is the part where

our proof for the general case of tripartite LDPC is different from the special case of bipartite

LDPC. Once this part is established, the rest of the proof follows similar to the case of the

bipartite LDPC.

For the case of tripartite LDPC, the decoding neighborhood at iteration l has depth 4l + 2.

Given the enumeration of the tiers of the graph in Figure 2, one can observe that the tiers 4k+1

with k = 0, 1, . . . consist of variable nodes, the tiers 4k + 2 consist of check nodes, the tiers

4k + 3 again consist of variable nodes and tiers 4k + 4 consist of symbol nodes. We say two

v-nodes are s-neighbors of each other if and only if they are connected to the same s-node. Note

that each v-node is connected to one and only one s-node but not the other way around.

Performing each new iteration adds 4 more tiers to the graph. We want to prove that for a

fixed l∗ the probability that the corresponding decoding neighborhood of depth 4l∗ is not tree-

like is upper-bounded by γ
n
. First we assume that for some l < l∗ the tiers corresponding to

iteration l have not produced any loops. This means that all the nodes in tiers 1, 2, . . . , 4l are

distinct. Furthermore, from the construction of the graph, no two v-nodes in these tires can be

s-neighbors; otherwise, their common neighboring s-node would have to be appeared twice in the

graph. We ask the question that what would be the probability that the decoding neighborhood

that is constructed due to performing one more iteration will not cause any loops. Performing

September 22, 2003 DRAFT

11

one more iteration corresponds to adding four more tiers to our graph. The last tier from previous

iteration (i.e. the tier 4l) is a row of s-nodes. The next tier (i.e. tier 4l + 1), would be a tier

of v-nodes. This tier would be a deterministic function of the previous tiers. Given that the

previous tiers have not caused any loops, this tier would not create a loop either. This is true

because all the v-nodes that appeared so far in the previous tiers, have their unique neighboring

s-node appeared as well. Therefore a v-node of the newly added tire 4l+1 cannot be a repeated

v-node. Otherwise, its neighboring s-node would also be a repeated node which contradicts the

assumption that the nodes till tier 4l do not contain any cycles. Now we will consider adding

the next tier of c-nodes. Assume that k c-nodes from the tier 4l + 2 have been added without

creating any loop. Given that assumption, the probability that a newly added c-node does not

create a loop would be:

(m− Cl − k)dc

mdc − Cl − k
= 1 − (dc − 1)(Cl + k)

mdc − Cl − k
≥ 1 − Cl∗

m
(4)

In the above expressions, m is the total number of check nodes in the graph of the code, Cl

is the total number of c-nodes in the graph corresponding to the decoding neighborhood of l

decoding iterations, and dc is the degree of the c-nodes. Repeating the above argument for each

of the Cl − Cl−1 c-nodes of tier 4l + 2 the probability that the nodes of this tier do not cause

any cycles is lower bounded by

(1 − C∗
l

m
)Cl−Cl−1 . (5)

Now we add the tiers 4l+3 and 4l+4. At each time we add one v-node from tier 4l+3 and

simultaneously we add its unique neighboring s-node from tier 4l+4. Again we assume k pairs

of such v-nodes and s-nodes have been added and no cycles has been created so far. We ask the

question that what would be the probability that adding a new pair of v-node and its neighboring

s-node does not create a cycle. In order for this pair of node not to make a cycle we need the

following two conditions. First, the new variable node that is chosen should not have appeared

in the previous rows. Second, the new v-node should not be an s-neighbor of any previously

added v-node; otherwise, their common neighboring s-node would appear twice. The number of

available possible positions for adding a new edge is ndv −Ml−k and the number of acceptable

positions for not creating a cycle would be [n− ds(Ml + k)]dv therefore the probability of not

September 22, 2003 DRAFT

12

creating a new cycle would be:

ndv − dvds(Ml + k)

ndv −Ml − k
= 1 − (dvds − 1)(Ml + k)

ndv −Ml − k
(6)

Since we have:

Ml + k < Ml∗

for sufficiently large n we can upper-bound the above expression by:

1 − dsMl∗

n

The number of v-nodes in the tier 4l + 3 is given by:

Ml+1 − (ds − 1)Ml −Ml = Ml+1 − dsMl

Therefore the probability that adding tiers 4l+ 3 and 4l+ 4 will not create any cycles would be

lower-bounded by:

(1 − dsMl∗

n
)Ml+1−dsMl . (7)

Combining the lower bounds given by (5) and (7) we get the following lower bound for the

probability of not causing a cycle by adding all tiers related to iteration l.

(1 − C∗
l

m
)Cl−Cl−1(1 − dsMl∗

n
)Ml+1−dsMl

Multiplying the above expression for l = 1, 2, . . . , l∗ we get the following lower-bound for the

probability of creating a cycle after l∗ iterations:

(1 − Cl∗

m
)Cl∗ (1 − dsMl∗

n
)
∑i=l∗−1

i=1
Mi+1−Mi

= (1 −
dc

dv
Cl∗

n
)Cl∗ (1 − dsMl∗

n
)
∑i=l∗−1

i=1
Mi+1−Mi

≥ 1 −
dc

dv
C2

l∗

n
− dsMl∗(

∑i=l∗−1
i=1 Mi+1 −Mi)

n
.

Thus, the probability that the decoding neighborhood is not tree-like is upper bounded by
dc

dv
C2

l∗ + dsMl∗(
∑i=l∗−1

i=1 Mi+1 −Mi)

n
.

The numerator of the above expression is γ(dv, dc, ds, l). For ds = 1 that expressions collapses

to the same expression for γ in the case of binary input symmetric output channel which is

given in [2]. Now that we have established an upper bound on the probability of having cycles,

the proofs of (3) and (1) follow in the same exact way as binary input channel. We will not

repeat those proves here as they are given in [2]. �

September 22, 2003 DRAFT

13

IV. M-ARY MODULATION AND MIMO CHANNEL

In this section we show that cases of M-ary modulation over a memoryless single-input and

single-output channel and also both binary and M-ary modulations over fading MIMO channels

are special cases that can be handled in the tripartite framework. In the following two subsections

we present specific equations for calculating the messages in the iterative decoding algorithm

for the two cases of LDPC codes used with an M-ary modulation and LDPC codes used over a

MIMO channel.

A. M-ary Modulation

Here the framework of tripartite LDPC code is used with an M-ary modulation scheme.

We assume that we have a single-input single-output Additive White Gaussian Noise (AWGN)

channel. The M-ary modulation scheme can be PSK or QAM or any other finite constellation.

The encoding part is quite straight forward. First the LDPC encoder maps blocks of k encoded

bits to blocks of n coded bits. Assuming we have an M-ary modulation scheme with M = 2m,

each sub-block of m coded bits choose a symbol out of M = 2m possible symbols.

The decoding algorithm starts with sending symbol to variable node messages. A symbol to

variable node message is a soft estimate for the value of that variable given the received value

from the channel and the previous estimates for the rest of the variable nodes connected to

that given symbol node. Assuming that we have an Additive White Gaussian Noise (AWGN)

channel, and working in log-likelihood ratio domain the appropriate symbol to variable message

would be:

ψs→v = log

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
p(v′1)p(v

′
2) . . . p(v

′
ds−1)e

‖c(v′
1,v′

2,...,v′
ds−1;V =1)−r‖2/2σ2

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
p(v′1)p(v

′
2) . . . p(v

′
ds−1)e

‖c(v′
1,v′

2,...,v′
ds−1;V =0)−r‖2/2σ2 (8)

In the above expression, the summation is performed over all possible combinations of the

values for the variable nodes v′1, v
′
2, . . . , v

′
ds−1 ∈ Vs\{v} where Vs represents the set of v-

nodes connected to an s-node s. The node v is excluded from the set as one expects from

the so-called “extrinsic information” principal. The term p(v′i) represents our current estimate

for the probability of the event that the variable node V ′
i has taken a value V ′

i = 0 or V ′
i =

1 (Here the random variable Vi takes a value vi and we have used the common short-hand

September 22, 2003 DRAFT

14

convention of writing p(vi) for p(Vi = vi)). The term c(v′1, v
′
2, . . . , v

′
ds−1;V = 1) represents the

constellation point corresponding to a given combination of values for variable nodes connected

to the corresponding symbol node. Finally r represents the noisy received value from the channel

and ds represents the degree of symbol nodes.

Now we re-write Equation (8) in terms of log-likelihood ratios. If we define mi
∆
= log

p(v′
i=1)

p(v′
i=0)

,

we have p(v′i = 1) = emi

1+emi
and p(v′i = 0) = 1

1+emi
. Therefore, we can re-write Equation (8) in

terms of log likelihood ratio messages as the following:

ψs→v = log

∑
v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
e
∑ds−1

i=1
miχ(V ′

i =1)+‖c(v′
1,v′

2,...,v′
ds−1;V =1)−r‖2/2σ2

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
e
∑ds−1

i=1
miχ(V ′

i =1)+‖c(v′
1,v′

2,...,v′
ds−1;V =0)−r‖2/2σ2

(9)

where χ(V ′
i = 1) is a characteristic function equal to 1 if V ′

i = 1 and equal to zero otherwise.

The variable to check node message is similar to the bipartite case with the only difference

that the term which corresponds to the estimate of a variable node from the channel would be

updated in each iteration. In the bipartite case that term would remain the same in all iterations.

The following equation gives the variable to check message in terms of symbol to variable

message and previous check to variable messages from other check nodes.

ψv→c = ψs→v +
∑

c′∈Cv\{c}
ψc′→v (10)

In contrast to the bipartite case, the first term on the righthand side of the above equation is

updated through consecutive iterations. Equation (10) corresponds to a product of likelihood

ratios. Since the messages are written in log-likelihood ratio the product is converted to a

summation.

The check node to variable node messages are exactly the same as bipartite case as given in

the following equation (see e.g. [2] for derivation).

ψc→v = log

1 +
dc−1∏
i=1

tanh
1

2
mi

1 −
dc−1∏
i=1

tanh
1

2
mi

(11)

where mi’s are previous variable to check messages and as before, dc represents the degree of

a check node.

September 22, 2003 DRAFT

15

Finally, variable to symbol node messages are the likelihood ratio of each variable node based

on information received from all check nodes. Due to independent assumption about the messages

received from different check nodes, this likelihood ratio would be the product of all likelihoods

which would translate to a summation in the log domain. Thus for variable to symbol message

we have:

ψv→s =
∑
c∈Cv

ψc→v (12)

The updated value of ψv→s would be used as new mi in Equation (9) in the next iterations.

Updating Equations (9) through (12) iteratively constitute the iterative decoding algorithm. A

hard decision on variable node is made at the beginning of each iteration and iterations are

stopped if this hard decision satifsfies all parity check equations.

B. MIMO Channel

Capacity of the MIMO channels increases linearly with the number of transmit antennas as

long as the number of receive antennas is greater than or equal to the number of transmit

antennas. This surprising theoretical result published in [15] and [14] has made transmission

over MIMO channels an active area of research. Celebrated space-time codes [16], [17] are

examples of attempts for designing coding techniques for MIMO channels. Given the excellent

performance of LDPC codes, it is of great practical and theoretical interest to investigate the

design of LDPC codes for a MIMO transmission scenario.

Here we use the tripartite framework to model a transmission scenario which includes a

binary LDPC code used over a MIMO channel with an M-ary modulation. In our MIMO model

we consider a communication system where Nt signals are transmitted from Nt transmitters

simultaneously. For example, in a wireless communication system, at each time slot t, signals

Ct,n, n = 1, 2, · · · , Nt are transmitted simultaneously from Nt transmit antennas. The signals are

the inputs of a multiple-input multiple-output (MIMO) channel with Nr outputs. Each transmitted

signal, input of the channel, goes through Nr different paths to arrive at the receiver. In a

wireless communication system with Nr receive antennas, each output of the channel is a linear

superposition of the faded versions of the inputs perturbed by noise. Each pair of transmit and

receive antennas provides a signal path from the transmitter to the receiver. The coefficient αi,j

is the path gain from transmit antenna j to receive antenna i. Based on this model, the signal

September 22, 2003 DRAFT

16

rt,i which is received at time t at antenna i is given by

rt,i =
Nt∑
j=1

αi,jCt,j + ηt,i, (13)

where ηt,i is the noise sample of the receive antenna i at time t.

To form a more compact input-output relationship, we collect the signals that are transmitted

from Nt transmit antennas during a time slot in a column vector C of length Nt as follows:

C =

C1

C2

...

CNt

. (14)

This vector is affected by ds = m × Nt variable nodes (coded bits) and we may refer to it as

C(V1, V2, · · · Vds).

Similarly, we construct a column vector r that includes all received signals during a given

time slot:

r =

r1

r2
...

rNr

. (15)

Then gathering the path gains in an Nr ×Nt channel matrix H

H =

α1,1 α1,2 · · · α1,Nt

α2,1 α2,2 · · · α2,Nt

...
...

. . .
...

αNr,1 αNr,2 · · · αNr,Nt

, (16)

results in the following vector form of Equation (13):

r = H · C + N , (17)

where N is the Nr × 1 noise vector defined by

N =

η1

η2

...

ηNr

. (18)

September 22, 2003 DRAFT

17

Let us assume a quasi-static slow fading model such that the noise samples ηi are independent

samples of a zero-mean complex Gaussian random variable with variance 1/(2 SNR) per com-

plex dimension. This is an additive white Gaussian noise (AWGN) assumption for a complex

baseband. If the average energy of the symbols transmitted from each antenna is normalized to

be 1/Nt, the average power of the received signal at each receive antenna is 1 and the received

signal to noise ratio is SNR. Note that the path gains are zero mean complex Gaussian random

variables with V ar[�{αi,j}] = V ar[�{αi,j}] = 0.5. Also, the bandwidth is narrow enough such

that the channel is flat over a band of frequency. Such a channel is called non-frequency selective

and the channel matrix is constant over the frequency band of interest. In the sequel, we use the

quasi-static, non-frequency selective assumptions.

A block of k un-coded information bits will be coded by the LDPC encoder to a block of

n coded bits. Assuming an M-ary modulation with M = 2m, blocks of m coded bits from the

output of the LDPC encoder select the appropriate symbol from the constellation. Blocks of

Nt symbols (constructed from m×Nt coded bits) are transmitted simultaneously from the Nt

transmit antennas. At the receiver side Nr noisy signals are received at the Nr received antennas.

Figure 3 shows the corresponding graph for a binary modulation with Nt = 2 transmit and

Nr = 2 receive antennas. The butterfly shaped sections on the left graph show the dependencies

between the signals transmitted and received over multiple transmit and multiple receive antennas.

Consecutive butterfly shaped sections on the graph correspond to consecutive channel uses.

On the right graph of Figure 3 the nodes corresponding to different receive antennas are

lumped into a single super-node. This super-node simply is a vector valued random variable

r as described in the above, whose components are the Nr received signals at the received

antennas. This allows us to treat the MIMO case in tripartite LDPC framework.

The decoding is similar to the M-ary case. Only the symbol node to variable node messages

are computed differently. The difference is that in Equations (8) and (9) the the argument

of the exponential term would be the square of the magnitude of a vector whose multiple

elements correspond to multiple receive antennas. In other words, the matrix of the channel fade

coefficients H which is assumed to be known (estimated) in the receiver is multiplied by the

vector of transmitted symbols for each combination of coded bits and the resulting vector is

subtracted from the vector of received values in the multiple receive antennas. The norm of this

difference vector is used as the argument of the exponential term in Equations (8) and (9).

September 22, 2003 DRAFT

18

We define vector f the faded version of the transmitted vector C to be:

f(v1, v2, · · · , vds) = H · C(v1, v2, · · · , vds), (19)

where v1, v2, · · · , vds are the values ds = m × Nt variable nodes that affect the signal vector

C(v1, v2, · · · , vds).

Similar to the case of M-ary modulation over a single-input single-output channel, we refer to

our current estimates for the probability of variables V1, V2, · · · , Vds as p(v1), p(v2), · · · , p(vds).

The following equation gives the calculation of symbol to node messages for the MIMO case:

ψs→v = log

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
p(v′1)p(v

′
2) . . . p(v

′
ds−1)e

‖f(v′
1,v′

2,...,v′
ds−1;V =1)−r‖2/2σ2

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
p(v′1)p(v

′
2) . . . p(v

′
ds−1)e

‖f(v′
1,v′

2,...,v′
ds−1;V =0)−r‖2/2σ2 (20)

Similar to the M-ary case we can re-write the above equation in terms of log-likelihood

messages mi
∆
= log

p(v′
i=1)

p(v′
i=0)

.

ψs→v = log

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
e
∑ds−1

i=1
miχ(V ′

i =1)+‖f(v′
1,v′

2,...,v′
ds−1;V =1)−r‖2/2σ2

∑

v′
1,v′

2,...,v′
ds−1

∈Vs\{v}
e
∑ds−1

i=1
miχ(V ′

i =1)+‖f(v′
1,v′

2,...,v′
ds−1;V =0)−r‖2/2σ2

(21)

The rest of the messages are calculated similar to the M-ary case. Simulation results with two

transmit and two receive antennas are given in [18].

V. CONCLUSION AND FURTHER DIRECTION OF RESEARCH

We presented the framework of tripartite LDPC codes. In contrast with previous works on

LDPC codes, in this framework we consider the case where a channel output is affected by

more than a single coded bit. Tripartite LPDC framework is general enough to cover the cases

of M-ary modulation and MIMO channels. We prove that concentration theorem which was

previously proved for the case of binary erasure channel by Luby et al and later was generalized

to binary input memory less channels by Richardson et. al. holds in our more general framework

as well.

Concentration: The decoding performance of a code chosen at random from the ensemble

of codes with a given degree characteristic for check nodes and variable nodes is close to

the expected value performance over that ensemble with a probability that approaches one

exponentially fast in the block-size of the code.

September 22, 2003 DRAFT

19

Convergence to Cycle-free case: The percentage of wrong decoding messages in the lth

iteration for a particular edge of the graph approaches to the expected value of this percentage

assuming that the neighborhood of depth 4l of that edge is cycle free.

Concentration around the Cycle-free case: The decoding performance of a code chosen

at random from the ensemble of codes with a given degree characteristic for check nodes and

variable nodes is close to the expected value performance over that ensemble assuming that the

decoding neighborhoods are cycle-free with a probability that approaches one exponentially fast

in the block-size of the code.

Similar theorems for the case of binary erasure channel and the case of binary input symmetric

output channels were proved in [3] and [2] respectively. Concentration Theorem is essential in

designing Irregular LDPC codes and calculating the capacity of message passing decoding.

We also presented the specific equations for messages used in decoding algorithm for M-ary

modulations and MIMO channels.

It would be desirable to extend the other results that are established for the binary input

channel to the case of tripartite LDPC codes as well. These results include “Density evolution

and Threshold Determination” [4] and analysis of stopping sets [19].

In this paper we assumed the fade coefficients of the MIMO channel is known or estimated at

the receiver. One possible extension of this framework is to include the unknown fade coefficients

as a fourth tier to the graph and include the estimation of the coefficients within the belief

propagation iterative decoding algorithm. In our approach we are considering a binary LDPC

code for a non-binary modulation scheme. Another interesting approach would be trying to

design a non-binary LDPC code.

REFERENCES

[1] R. G. Gallager, “Low-Density Parity-Check Codes.” Cambridge, MA: MIT Press, 1963.

[2] Richardson, T.J.; Urbanke, R.L. “The capacity of low-density parity-check codes under message-passing decoding”.IEEE

Transactions on Information Theory, vol.47, (no.2), IEEE, Feb. 2001. p.599-618

[3] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “ Improved low-density parity check codes using

irregular graphs and belief propagation,” presented at the 1998 International Symposium on Information Theory, ISIT98,

Cambridge, MA, Aug. 16–21 1998.

[4] Richardson, T.J.; Shokrollahi, M.A., Urbanke, R.L. “Design of Capacity-Approaching Irregular Low-Density Parity-Check

Codes”.IEEE Transactions on Information Theory, vol.47, (no.2), IEEE, p.619–637, Feb. 2001.

September 22, 2003 DRAFT

20

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes,”

Proc. of ICC ’93, pp. 1064-1070, 1993.

[6] J. Pearl, “Probabilistic Reasoning in Intelligent Systems”, San Mateo, CA: Morgan Kaufmann, 1988.

[7] N. Wiberg, “Codes and Decoding on General Graphs”, Linkoping Studies in Science and Technology, Dissertation No.

440. Linkoping, Sweden, 1996.

[8] D.J.C. MacKay, R.J. McEliece and J.F. Cheng, “Turbo Decoding as an Instance of Pearl’s Belief Propagation Algorithm”,

IEEE Journal on Selected Areas in Communication, vol. 16, pp. 140–152, Feb. 1998. .

[9] F. Kschischang and B. Frey, “Iterative decoding of compound codes by probability propagation in graphical models,” IEEE

Journal on Selected Areas in Communication, vol 16 pp. 219–230, Feb. 1998.

[10] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on

Information Theory, Vol. 47 No. 2, pp. 498–519, Feb 2001.

[11] S. Benedetto and G. Montorsi, “Serial concatenation of block and convolutional codes,” Electronics Letters, Vol. 32, pp.

887–888, May 1996.

[12] MacKay, D.J.C. “Good Error-Correcting Codes based on Very Sparse Matrices,” IEEE Transactions on Information Theory,

Vol. 45 No. 2, pp. 399–431, Mar. 1999.

[13] A. Khandekar, H. Jin and R. J. McEliece, “Irregular Repeat-Accumulate Codes,” Proceedings 2nd International Symposium

on Turbo codes and Related Topics, pp. 1–8. Brest, France, Sept. 4, 2000.

[14] G. J. Foschini and M. Gans, “On the limits of wireless communication in a fading environment when using multiple

antennas,” Wireless Pers. Commun., vol. 6, pp. 311–335, Mar. 1998.

[15] E. Teletar “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, pp.

585–595, Nov./Dec. 1999.

[16] V. Tarokh, N. Seshadri and A.R. Calderbank, “Space-time codes for high data rate wireless communication: Performance

analysis and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar. 1998.

[17] V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space-Time Block Codes From Orthogonal Designs,” IEEE Trans. Inform.

Theory, vol. 45, pp. 1456–1467, July 1999.

[18] P. Meshkat and H. Jafarkhani, “Space-Time Low Density Parity Check Codes,” Asilomar Conference on Signals, Systems,

and Computers, invited paper, Nov. 2002.

[19] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite length analysis of low-density parity-check codes on

the binary erasure channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1570-1579, June 2002.

September 22, 2003 DRAFT

21

� � � � � �
� � � � � �

� � � � � � � �
� � �

� � � � �
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� � � � � � �

� ��� ���� ��

� � � � � � � �

�����

� � � � �
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 1. Graphs of bipartite and tripartite LDPC codes: Squares correspond to check nodes, white circles correspond to bit

(variable) nodes and black circles correspond to symbol nodes (channel output).

� �

� �

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �������

������

������

������

����������������

���������������

�

Fig. 2. Decoding Neighborhood of tripartite LDPC code: Performing each iteration adds four new tiers to the decoding

neighborhood.

� � � � � �

� � � � � �

� � � � � � � �

� � ��� �� ���� �� �� �� ���� ��

� � � � �
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� � � � � � �

� � ��� �� ���� �� ��
� � � � � � � �

� ��� ���� ��

� � � � �
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������

	
	
	
	
		

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 3. LDPC code used over MIMO channel Squares correspond to check nodes, white circles correspond to bit (variable)

nodes and black circles correspond to channel output. The butterfly-shaped sections on the left graph correspond to two transmit

and two receive antennas. In the right graph the nodes in the bottom tier of each butterfly-shaped section are combined to a

single “super-node”. Now the left graph fits in the tripartite framework.

September 22, 2003 DRAFT

