The Impacts of Physical Layer Parameters on the Connectivity of Ad-Hoc Networks

Javad Kazemitabar, Homayoun Yousefi'zadeh, Hamid Jafarkhani University of California Irvine

[skazemit, hyousefi, hamidj]@uci.edu

- Background
- Ergodic SER Metric of Connectivity
- Performance results
- Conclusion

- Background
- \surd Ergodic SER Metric of Connectivity
- Performance Results
- Conclusions

Earlier Metrics of Connectivity

- Geometric disk model, Gilbert (1961): Distance less than the transmission range
 - No interference assumption
 - Node density more than a limit results in percolation, i.e., global connectivity
- SINR model, Gupta and Kumar (2000):
 Signal to Interference-Noise Ratio more than a threshold

Connectivity Reality

- A link between two nodes is a wireless channel
- A high-quality link is identified by:
 - A high capacity, and/or
 - A low symbol error rate
- New metrics of connectivity needed to capture the quantities

New Metrics of Connectivity

- SER metric, YJK (2005):
 - Outage probability of symbol error rates:

$$Pr(C_i < C_{out}) < \Delta_C$$

Ergodic symbol error rate less than a threshold:

$$\overline{C}_i \ge C_{out}$$

- Capacity metric, JYK (2005):
 - Outage connectivity: $Pr(SER_i > S_{out}) < \Delta_S$
 - Ergodic capacity more than a threshold:

$$\overline{SER}_i \leq S_{out}$$

The new measure

Capture the reality of the physical layer

The new measure

- Capture the reality of the physical layer
- Outage and ergodic formulas are well known

The new measure

- Capture the reality of the physical layer
- Outage and ergodic formulas are well known
- Have higher complexities compared to SINR and geometric disk models

The new measure

- Capture the reality of the physical layer
- Outage and ergodic formulas are well known
- Have higher complexities compared to SINR and geometric disk models
- †What are the effects of physical layer variations on connectivity?

- √ Background
 - Ergodic SER Metric of Connectivity
- Performance Results
- \surd Conclusions

Ergodic SER Metric

 Two nodes forming a link i are considered connected if

$$\overline{SER}_i \leq S_{out}$$

(a) \overline{SER}_i is the ergodic symbol error rate of link i and is calculated as a function of \overline{SINR}_i , number of transmit-receive antennas, coding, and modulation (b) S_{out} is the threshold of connectivity and represents hardware sensitivity

Getting the Devil out ...

The Symbol Error Rate of link i with M_i transmit and N_i receive antennas utilizing BPSK is identified as

$$SER_i = Q\left(\sqrt{2\beta \Upsilon_i \overline{SINR_i}}\right)$$

where Q represents Marqum Q function, \overline{SINR}_i is the average signal-to-interference-noise-ratio of link i, and Υ_i is defined as a function of fading factors F_{ii}

$$\Upsilon_i = \sum_{m=1}^{M_i} \sum_{n=1}^{N_i} F_{ii}(n, m)$$

Antenna-dependent values of β are shown below

	1×1	2×1	1×2	2×2
β	1	0.5	1	0.5

· · · of the Details

When facing an ergodic Rayleigh channel and utilizing L-PSK modulation, the average \overline{SER}_i is specified as

$$\overline{SER}_i = \int_0^\infty \left(\frac{1}{\pi} \int_0^{(L_i - 1)\pi/L_i} \exp\left(-\frac{2\beta \Upsilon_i \overline{SINR}_i}{2\sin^2 \tau} \right) d\tau \right) p_{\Upsilon}(\Upsilon_i) d\Upsilon_i$$

The above integral has closed-form results for a number of antenna configurations and coding schemes, e.g., a 2×2 link utilizing Alamouti STBCs and BPSK modulation,

$$\overline{SER}_i = \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\overline{SINR}_i}{2 + \overline{SINR}_i}} \left(\sum_{j=0}^{3} \frac{\binom{2j}{j}}{[2(2 + \overline{SINR}_i)]^j} \right)$$

- \surd Background
- Ergodic SER Metric of Connectivity
 - Performance Results
- √ Conclusions

Experiment Settings

- Topology
 - A network with 200 nodes
 - An area of 1000 square meters
 - Nodes are distributed randomly
- Physical Layer Settings
 - BPSK modulation is used
 - Each node has two antennas
 - STBCs of Alamouti code is used when transmitting
 - MRC is used when receiving
- Communications Channel
 - Quasi-static flat Rayleigh fading
 - Transmit power of 1W, noise power of $10\mu W$
 - Shadowing gains $G_{ii}=rac{1}{d_{ii}^3}$, $G_{ij}=rac{\eta}{d_{ij}^3}$

Interference Coefficient Effects

Normalized size of the largest connected cluster versus the interference coefficient

 η for a connectivity threshold of $S_{out}=0.001$

Interference Coefficient Effects (2)

Connectivity graphs associated with the three points before, at, and after the knee of the previous curve

Connectivity Threshold Effects

Normalized size of the largest connected cluster versus the threshold of connectivity S_{out} for an interference coefficient $\eta=0.002$

Node Density Effects

- Connectivity graphs with $S_{out} = 0.001$ and $\eta = 0.001$
- Connectivity decreases with the number of nodes in the network

Node Density Effects (2)

- Connectivity graphs with S_{out} =1e-6 and η =1e-5
- Connectivity decreases with the number of nodes in the network

- √ Background
- \surd Ergodic SER Metric of Connectivity
- \surd Performance Results
 - Conclusions

Conclusions

- Interference coefficient poses percolation-like effects
- Connectivity threshold poses trivial effects
- Node density effects depend on interference and threshold values