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Abstract—For the K-user interference channel, Geng et al.
identify a general condition under which power control and
treating interference as noise (TIN) is optimal from the per-
spective of generalized degrees of freedom (GDoF). In this work,
we show that for a K-user compound interference channel, if
in every possible state for each receiver, the channel satisfies the
TIN-optimality condition of Geng et al., then power control and
TIN achieves the entire GDoF region of the compound channel.
For an arbitrary compound interference channel, we find a non-
trivial counterpart regular interference channel, such that the
two have the same TIN region, and the GDoF-optimal power
control problems for the two are equivalent.

I. INTRODUCTION

Recent work by Geng et al. in [1] identifies a broad
regime where treating interference as noise (TIN) is optimal
in the generalized degrees of freedom (GDoF) sense, and
within a constant gap to exact capacity. Remarkably, the
approximate optimality of TIN established in [1] is not only
for sum-capacity but for the entire capacity region, and it
fully incorporates power control. In fact power control is a
crucial aspect of the TIN scheme, since it is generally not
optimal for all nodes to transmit at full power if interference
is treated as noise. Specifically, it is shown in [1] that in a
K-user Gaussian interference channel, if for each user the
desired signal strength is no less than the sum of the strengths
of the strongest interference from this user and the strongest
interference to this user (all values in dB scale), then TIN
(with power control) is optimal from the perspective of GDoF
and achieves the entire capacity region to within a constant
gap.

In this work, we generalize the question of optimality of
TIN to compound networks [2]-[5], with focus on interference
channels. In a compound network, each receiver is associated
with a set of states (a receiver’s state is identified by the
channel realizations associated with that receiver). The sets
of possible states for each receiver are globally known a-
priori, however the transmitters are unaware of the particular
realization chosen from within these sets. Thus, a reliable
coding scheme must guarantee vanishing probability of error
for every possible realization of each receiver from its given
set of possible states. Equivalently, the compound interfer-
ence channel can be described as having potentially multiple
receivers for each message. This is known as the multiple
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multicast, or multiple groupcast setting [6] and is of interest in
its own right. An example of a 3-user compound interference
channel is illustrated in Fig. 1.

Of particular interest for this work are compound networks
where each possible state of the network individually satisfies
the TIN-optimality condition of Geng et al. [1]. Is TIN
still optimal for such a compound interference network as a
whole, when all possible states are simultaneously considered?
More generally, the implications of the compound setting on
the GDoF region achievable through TIN (even if the TIN-
optimality conditions are not satisfied) is also of interest and
will be explored in this work.
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Fig. 1. A 3-user compound interference channel, where Receiver 1, 2, and
3 have 2, 3 and 1 possible states, respectively. For each receiver, the multiple
potential states may also be interpreted as different users which intend to
decode the common message from the corresponding transmitter. For this
compound interference channel, there are totally 2 × 3 × 1 = 6 possible
network realizations (or states), each of which corresponds to a 3-user regular
interference channel.

A. Challenges Posed by the Compound Setting

Consider a K-user compound interference channel which
satisfies the TIN-optimality condition of [1] in each possible
state, individually. Recall that with the simple TIN scheme,
each transmitter uses a point-to-point Gaussian codebook with
an appropriate power level and each receiver only decodes
the signal from its corresponding transmitter and treats the
incoming interference as Gaussian noise. Denote by P the set
of all the valid power allocations, H the set of all the possi-
ble network realizations, and D(P,H) the achievable GDoF
region through the TIN scheme for the network realization
H ∈ H with power allocation P ∈ P .

First, consider the achievability argument. Since the rate
for each message in the TIN scheme is only limited by the
minimum SINR (signal to interference and noise power ratio)



across all states of the intended receiver, it is evident that
for any valid power allocation P ∈ P , ∩H∈HD(P,H) is
achievable. Taking the union of achievable rates over all the
valid power allocations, we obtain the following inner bound
on the GDoF region.

Inner Bound = ∪P∈P ∩H∈H D(P,H) (1)

Next, consider the converse argument. Recall the assump-
tion that the compound network satisfies the TIN-optimality
condition of [1] in each possible state. In other words, each
possible network state, by itself is TIN-optimal. For a given
network state H ∈ H, since TIN is optimal, the entire GDoF
region is achievable through power control and TIN, and it
can be expressed as ∪P∈PD(P,H). Furthermore, since the
GDoF region for each state is an outer bound for the GDoF
region of the compound setting, by taking the intersection of
the GDoF regions of all network states, we get the following
outer bound on the GDoF region.

Outer Bound = ∩H∈H ∪P∈P D(P,H) (2)

Note that while both the inner bound and the outer bound
for the GDoF region involve union over power allocations and
intersection over network states, the inner bound is the union
of intersections whereas the outer bound is the intersection of
unions. In general a union of intersections is (possibly strictly)
smaller than or equal to an intersection of unions, consistent
with their roles as inner and outer bounds, respectively.1 So the
main challenge in settling the optimality of TIN for compound
interference networks is to prove that, in our context, the two
are indeed, identical.

B. Main Contributions

1) The optimality of TIN for compound interference chan-
nels: We show that for K-user compound Gaussian interfer-
ence channels, if each possible network realization satisfies
the TIN-optimality condition of [1], then power control and
TIN achieves the entire GDoF region of the compound setting,
which is the intersection of the GDoF regions of all possible
network realizations. The result is derived from a non-trivial
argument based on the potential theorem in [7], which builds
upon the application of the potential theorem in [1]. For a
general compound interference channel which may be not
TIN-optimal, the entire TIN region (i.e., the achievable GDoF
region through the TIN scheme) is also fully characterized.

2) Simplification of the compound interference channel
into a regular counterpart: We show that for any K-user
compound interference channel, regardless of the number of
states for each receiver, we can always construct a counter-
part K-user regular (where the network has only one state)
interference channel, which has the same TIN region as
that compound channel. Remarkably, the counterpart regular
interference channel is in general none of the possible network

1Consider a simple example where P = {P1,P2}, H = {H1,H2},
D(P1,H1) = {1}, D(P1,H2) = {2}, D(P2,H1) = {2}, and
D(P2,H2) = {1}. It is easy to check that the right hand sides of (1)
and (2) are φ and {1, 2}, respectively, which are not equal to each other.

realizations of the compound channel. In the full paper [8],
we also show that to solve the GDoF-optimal power control
problem for a K-user compound interference channel, we only
need to solve the problem in its regular counterpart. In other
words, from the GDoF perspective, the power control and
TIN problems for compound and regular interference channels
are equivalent, which significantly reduces the computational
complexity of the GDoF-based power control in the compound
setting. For instance, for the 3-user compound interference
channel in Fig. 2(a), we can construct its counterpart 3-user
regular interference channel, which is given in Fig. 2(b). Not
only the two channels in Fig. 2(a) and 2(b) have the same
TIN region, but also solving the GDoF-based power control
problem for one is equivalent to solving the problem for the
other. However, it should be noted that the compound channel
and its regular counterpart are only equivalent in terms of the
achievability of the TIN scheme. In [8], we give an example in
which the compound interference channel is not TIN-optimal
(i.e., there exist other achievable schemes outperforming the
TIN scheme), while its regular counterpart satisfies the TIN-
optimality condition of [1].
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Fig. 2. (a) A 3-user compound interference channel, where Receiver 1 has
two possible states. The value on each link denotes its channel strength level,
which is defined in Section II formally; (b) The counterpart 3-user regular
interference channel for the compound channel in Fig. 2(a).

Notations: Throughout this paper, for any positive integer
Z, 〈Z〉 denotes the set {1, 2, ..., Z}, and for any real number
a, (a)+ and max{0, a} are used interchangeably. In addition,
all logarithms are to the base 2.

II. CHANNEL MODEL AND PRELIMINARIES

Consider a K-user Gaussian interference channel consist-
ing of K transmitter-receiver pairs. The channel coefficients
associated with Receiver k, ∀k ∈ 〈K〉, are denoted as a
vector (h̃k1, h̃k2, ..., h̃kK), which is drawn from a finite set Lk
with cardinality Lk. We assume that the channel coefficients
remain fixed during the transmission. In addition, while the
transmitters are unaware of the specific channel realizations,
knowledge of Lk is assumed to be globally available. The
receivers are assumed to have perfect channel state infor-
mation. In this compound setting, reliable communication
needs to be guaranteed simultaneously for all possible channel
realizations. For Receiver k, the received signal in state lk is



given by

Y
[lk]
k (t) =

K∑
i=1

h̃
[lk]
ki X̃i(t) + Z

[lk]
k (t), ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉

(3)
where h̃

[lk]
ki is the channel gain value from Transmitter i to

Receiver k, X̃i(t) and Z
[lk]
k (t) are the transmitted symbol

of Transmitter i and the additive white circularly symmetric
Gaussian noise with zero mean and unit variance at Receiver k,
respectively, in the t-th channel use. All symbols are complex.
Each Transmitter i is subject to the average power constraint
E[|X̃i(t)|2] ≤ Pi.

To facilitate the GDoF studies, the standard channel model
(3) is translated into an equivalent normalized form following
similar approaches in [1], [9]. Define2

α
[lk]
ki ,

log(max{1, |h̃[lk]
ki |2Pi})

logP
, ∀i, k ∈ 〈K〉,∀lk ∈ 〈Lk〉

where P > 1 is a nominal power value. Then the original
channel model (3) can be presented in the following form,

Y
[lk]
k (t) =

K∑
i=1

√
Pα

[lk]

ki ejθ
[lk]

ki Xi(t) + Z
[lk]
k (t),

∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉
(4)

where Xi(t) is the normalized transmit symbol of Transmitter
i, subject to the unit power constraint, i.e., E[|Xi(t)|2] ≤ 1.√
Pα

[lk]

ki and θ
[lk]
ki are the channel magnitude and phase be-

tween Transmitter i and Receiver k under state lk, respectively.
As in [1], α[lk]

ki is called the channel strength level. In the
rest of this paper we will consider the equivalent channel
model in (4). The definitions of messages, achievable rates,
capacity region, generalized degrees of freedom (GDoF) are
all standard (see, e.g., [1], [8]) and thus omitted here.

A. The Achievable GDoF Region through TIN

In the K-user compound interference channel, we assume
the power allocated to Transmitter k is P rk . Due to the unit
power constraint, rk ≤ 0, ∀k ∈ 〈K〉. The rate achievable by
User k through TIN is limited by the smallest SINR across
all states possible for this user. So User k ∈ 〈K〉 can achieve
any rate Rk such that

Rk ≤ min
lk

{
log

(
1 +

P rk × Pα
[lk]

kk

1 +
∑K
j=1,j 6=k P

rj × Pα
[lk]

kj

)}
(5)

In the GDoF sense, we have

0 ≤ dk ≤ min
lk

{
max{0, α[lk]

kk + rk − (max
j:j 6=k

{α[lk]
kj + rj})+}

}
(6)

The TIN region, which is denoted by P∗, is the set of all
GDoF tuples (d1, d2, ..., dK) for which there exist rk’s, such

2Similar to [1], it is not hard to verify that avoiding negative α’s has no
impact on the GDoF results.

that ∀k ∈ 〈K〉

rk ≤ 0,

dk ≥ 0,

dk ≤ min
lk

{
max{0, α[lk]

kk + rk − (max
j:j 6=k

{α[lk]
kj + rj})+}

}
Similar to [1], we also introduce a polyhedral version of the

TIN scheme, which is called the polyhedral TIN scheme. By
requiring minlk

{
α

[lk]
kk + rk− (maxj:j 6=k{α[lk]

kj + rj})+
}

to be
no less than 0 for all users, we can ignore the first max{0, .}
term in (6) and obtain

0 ≤ dk ≤ min
lk

{
α

[lk]
kk + rk − (max

j:j 6=k
{α[lk]

kj + rj})+
}

(7)

We call the new achievable GDoF region after the above
modification the polyhedral TIN region P . So P is the set
of all GDoF tuples (d1, d2, ..., dK) for which there exist rk’s,
k ∈ 〈K〉, such that the equations (8)-(11) at the top of next
page are satisfied.

In general, with this modification we require that the right
hand side of (7) is non-negative for all users k ∈ 〈K〉, hence
we put more constraints on the power exponents ri’s besides
the constraints of ri ≤ 0, which can only shrink the achievable
GDoF region via power control and TIN. In other words, P ⊆
P∗. Later our results will show that when certain conditions
hold, P = P∗, i.e., the above modification incurs no loss.

III. RESULTS

In this section, we present the results of this work.3

The following theorem provides a broadly applicable con-
dition under which power control and TIN achieves the entire
GDoF region of a K-user compound interference channel.

Theorem 1: In a K-user compound interference channel, if
the following condition is satisfied,

α
[li]
ii ≥ max

j:j 6=i
{α[lj ]

ji }+ max
k:k 6=i

{α[li]
ik },

∀i, j, k ∈ 〈K〉,∀li ∈ 〈Li〉,∀lj ∈ 〈Lj〉
(12)

then power control and TIN achieves the entire GDoF region,
which is the intersection of the GDoF regions of all the
possible network realizations and includes all the GDoF tuples
(d1, d2, ..., dK) satisfying

0 ≤ di ≤ α[li]
ii , ∀i ∈ 〈K〉,∀li ∈ 〈Li〉 (13)

m∑
j=1

dij ≤
m∑
j=1

(α
[lij ]

ijij
− α

[lij ]

ijij+1
)

∀(i1, ...,im) ∈ ΠK ,∀m ∈ {2, 3, ...,K},∀lij ∈ 〈Lij 〉
(14)

where ΠK is the set of all possible cyclic sequences4 of all
subsets of 〈K〉 with cardinality no less than 2, and the modulo-
m arithmetic is implicitly used on user indices, e.g., im = i0.

3Readers can refer to illustrative examples and remarks in the full paper
[8], which help understand the results of this work.

4Each cyclic sequence in ΠK is a cyclically ordered subset
of user indices, without repetitions. For instance, Π3 ={

(1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)
}

.



rk ≤ 0, ∀k ∈ 〈K〉 (8)
dk ≥ 0, ∀k ∈ 〈K〉 (9)

dk ≤ α[lk]
kk + rk ⇔ rk ≥ dk − α[lk]

kk , ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (10)

dk ≤ α[lk]
kk + rk − (α

[lk]
kj + rj)⇔ rk − rj ≥ (α

[lk]
kj − α

[lk]
kk ) + dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉 (11)

Proof : For the converse, we first consider each possible
network state individually. Since under the condition (12), in
each network state, the channel satisfies the TIN-optimality
condition identified in [1], it is not hard to characterize its
GDoF region. Taking the intersection of the GDoF regions
of all the possible network states, we have the desired outer
bounds.

Next, consider the achievability. Recall that for the K-user
compound interference channel, the polyhedral TIN region P
defined in Section II-A is characterized by (8)-(11). Setting

r
[lk]
k = rk, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉, (15)

it is easy to check that the set of the inequalities (8)-(11) is
equivalent to (16)-(20) given at the top of next page. In other
words, for a GDoF tuple (d1, d2, ..., dK) ∈ RK+ (i.e., the non-
negative orthant of the K-dimensional Euclidean space), it is
in the polyhedral TIN region P if and only if there exists r[lk]

k ,
k ∈ 〈K〉, lk ∈ 〈Lk〉, such that (17)-(20) hold.

Then for any K-user compound interference channel, we
construct a complete digraph Dp = (V,E) with

∑
k Lk + 1

vertices, where V and E are the sets of vertices and edges,
respectively, and

V = {v[1]
1 , ..., v

[lk]
k , ..., v

[LK ]
K , u}, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉

We assign a length l(e) to each edge e ∈ E following (21)-
(24) in next page, where (a, b) denotes the edge from vertex a
to vertex b. We call such a digraph Dp the potential graph for
the K-user compound interference channel. As an example,
the potential graph Dp for a 2-user compound interference
channel with L1 = 2 and L2 = 1 is given in Fig. 3.

v
[1]
1

v
[2]
1

u

v
[1]
2

0 0

0

0

0

Fig. 3. The potential graph Dp for a 2-user compound interference channel
with L1 = 2 and L2 = 1, where the value on each edge denotes the edge
length.

By definition [7], for a graph a function p : V → R is
called a potential if for every two vertices a, b ∈ V such that
(a, b) ∈ E, l(a, b) ≥ p(b) − p(a). Note these inequalities

depend upon the difference between potential function values
only. Therefore, without loss of generality, if there exists
a valid potential function for the potential graph Dp, we
can make the vertex u ground, i.e., p(u) = 0. Then let
r

[lk]
k := p(v

[lk]
k ), ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉. It is not hard to check

that the potential function values should satisfy the inequalities
(17)-(20). In other words, in a K-user compound interference
channel, for a GDoF tuple (d1, d2, ..., dK) ∈ RK+ , it is in the
region P if and only if there exists a valid potential function
for its potential graph Dp.

Finally, based on the potential theorem in [7], which says
that there exists a potential function for a digraph D if and
only if each directed circuit in D has a non-negative length,
we conclude that for a GDoF tuple (d1, d2, ..., dK) ∈ RK+ , it
is in the region P if and only if the length of each directed
circuit in Dp is non-negative. Therefore, to characterize the
polyhedral TIN region P , the only job left is to make sure the
lengths of all the directed circuits in Dp are no less than 0.
We categorize all the directed circuits of Dp into the following
three classes:
• Circuits in the form of (u → v

[lk]
k → u). For these

circuits, the non-negative length condition gives us

α
[lk]
kk − dk ≥ 0⇔ dk ≤ α[lk]

kk (25)

• Circuits in the form (v
[li0 ]
i0

→ v
[li1 ]
i1

→ ... → v
[lim ]
im

),
where i0 = im and (i1, i2, ..., im) ∈ ΠK . For these
circuits, the non-negative length condition becomes

m∑
j=1

(α
[lij ]

ijij
− α

[lij ]

ijij+1
− dij ) ≥ 0

⇔
m∑
j=1

dij ≤
m∑
j=1

(α
[lij ]

ijij
− α

[lij ]

ijij+1
)

(26)

• All the other circuits. For the remaining circuits, it is easy
to check that given (25) and (26), the inequalities derived
from the non-negative length condition are all redundant.

Consequently, we end up with the conditions (25)-(26).
Explicitly adding the non-negative constraint on di’s in (25)-
(26), we obtain the polyhedral TIN region P , which turns out
to be the intersection of the polyhedral TIN regions for all the
possible network realizations and fully characterized by (13)-
(14). Clearly, under condition (12), the polyhedral TIN region
P coincides with the derived outer bounds. Thus we complete
the proof. �

Based on the result of Theorem 1, we further obtain the
TIN region P∗ for general K-user compound interference



dk ≥ 0, ∀k ∈ 〈K〉 (16)

r
[lk]
k ≤ 0, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (17)

r
[lk]
k − r[l′k]

k ≤ 0, ∀k ∈ 〈K〉,∀lk, l′k ∈ 〈Lk〉, lk 6= l′k (18)

r
[lk]
k ≥ dk − α[lk]

kk , ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (19)

r
[lk]
k − r[lj ]

j ≥ (α
[lk]
kj − α

[lk]
kk ) + dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉,∀lj ∈ 〈Lj〉 (20)

l(v
[lk]
k , v

[l′k]
k ) = 0, ∀k ∈ 〈K〉,∀lk, l′k ∈ 〈Lk〉, lk 6= l′k (21)

l(v
[lk]
k , v

[lj ]
j ) = (α

[lk]
kk − α

[lk]
kj )− dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉,∀lj ∈ 〈Lj〉 (22)

l(v
[lk]
k , u) = α

[lk]
kk − dk, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (23)

l(u, v
[lk]
k ) = 0, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (24)

channels. Following along the lines of Theorem 5 in [1], we
get that in general P∗ is a union of 2K polyhedral TIN regions
PS , each of which corresponds to the case where the users
in S (any subset of 〈K〉) are deactivated and thus removed
from the network. Note that for general compound interference
channels, Pφ (i.e., the polyhedral TIN region for the case in
which all the users are active) is the same as the polyhedral
TIN region P defined in Section II-A, i.e., P = Pφ. When
(12) is satisfied, the polyhedral TIN region Pφ subsumes all
the others and P∗ = P .

In the sequel, we show how to construct a regular (i.e., not
compound) interference channel that has the same TIN region
as a given compound interference channel where TIN may or
may not be optimal. Denote the K-user compound interference
channel defined in (4) as ICC . Based on ICC , we construct a
counterpart K-user regular interference channel ICR with the
input-output relationship

Yk(t) =

K∑
i=1

√
P ᾱkiejθkiXi(t) + Z̄k(t), ∀k ∈ 〈K〉,

where

ᾱkk = min
lk
{α[lk]

kk }, ∀k ∈ 〈K〉

ᾱkj = min
lk
{α[lk]

kk } −min
lk
{α[lk]

kk − α
[lk]
kj }, ∀k, j ∈ 〈K〉, j 6= k,

and Z̄k(t) ∼ CN (0, 1). It is noteworthy that the regular
interference channel ICR is a non-trivial mixture of states of
the compound channel ICC .

The following theorem states the equivalence result.
Theorem 2: The K-user compound interference channel
ICC and its counterpart K-user regular interference channel
ICR have the same TIN region P∗ and the same polyhedral
TIN region P .

The proof details of Theorem 2 are deferred to [8]. The
equivalence is particularly useful for GDoF-optimal power
control algorithms for compound channels. In [8], taking
advantage of the simplification of the compound setting to the

regular case and using additional insights from the potential
theorem, we devise a centralized iterative power control algo-
rithm, which requires at most K updates, to obtain the optimal
power allocation for any feasible GDoF tuple of general K-
user compound interference channels.

IV. CONCLUSION

We show that for a K-user compound Gaussian interference
channel, if in each possible network state, the channel satisfies
the TIN-optimality condition identified in [1], then its GDoF
region is the intersection of the GDoF regions of all the
network states, which is achievable via power control and
TIN. We also demonstrate how to construct, for a general
compound interference channel, a counterpart regular inter-
ference channel that has the same TIN region, which leads to
a simple solution of the GDoF-optimal power control problem
for compound settings.
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