
1

Optimal Download Cost of Private Information
Retrieval for Arbitrary Message Length

Hua Sun and Syed A. Jafar

Abstract—A private information retrieval scheme is a mecha-
nism that allows a user to retrieve any one out of K messages
from N non-communicating replicated databases, each of which
stores all K messages, without revealing anything (in the infor-
mation theoretic sense) about the identity of the desired message
index to any individual database. If the size of each message is L
bits and the total download required by a PIR scheme from all
N databases is D bits, then D is called the download cost and the
ratio L/D is called an achievable rate. For fixed K,N ∈ N, the
capacity of PIR, denoted by C, is the supremum of achievable
rates over all PIR schemes and over all message sizes, and was
recently shown to be C = (1+1/N +1/N2 + · · ·+1/NK−1)−1.
In this work, for arbitrary K,N , we explore the minimum
download cost DL across all PIR schemes (not restricted to linear
schemes) for arbitrary message lengths L under arbitrary choices
of alphabet (not restricted to finite fields) for the message and
download symbols. If the same M -ary alphabet is used for the
message and download symbols, then we show that the optimal
download cost in M -ary symbols is DL = dL

C
e. If the message

symbols are in M -ary alphabet and the downloaded symbols are
in M ′-ary alphabet, then we show that the optimal download
cost in M ′-ary symbols, DL ∈

{⌈
L′

C

⌉
,
⌈

L′

C

⌉
− 1,

⌈
L′

C

⌉
− 2

}
,

where L′ = dL logM′Me, i.e., the optimal download cost is
characterized to within 2 symbols.

I. INTRODUCTION

In the private information retrieval (PIR) problem [1], [2],
we have K messages, stored at N distributed and non-
communicating databases. A PIR scheme allows a user to
retrieve any one of the K messages, while revealing no
information to any individual database (even if the database
has unbounded computation power) about the retrieved mes-
sage index. Typical quality measures of PIR schemes include
communication complexity [1], [2], [3], [4], [5], [6], [7],
computational overhead [8], [9], [10], storage overhead [11],
[12], [13], [14], [15], [16], [17], [18], [19], upload cost,
download cost [11], [12], [14], [20], [18], and rate [20], [14],
[18]. In this work we will focus on download cost and rate.
If the size of each message is L bits and the total download
required by a PIR scheme from all N databases is D bits, then
D is called the download cost and the ratio L/D is called an
achievable rate. The capacity of PIR, denoted by C, is defined

Hua Sun (email: huas2@uci.edu) and Syed A. Jafar (email: syed@uci.edu)
are with the Center of Pervasive Communications and Computing (CPCC) in
the Department of Electrical Engineering and Computer Science (EECS) at
the University of California Irvine.

to be the supremum of achievable rates over all PIR schemes
and over all message sizes. It was shown recently in [20] that1

C =

(
1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1

)−1
(1)

The reciprocal of capacity, 1/C, similarly represents the
infimum of download cost per message bit over all PIR
schemes and over all message sizes. Fundamental information
theoretic measures such as these are essentially asymptotic
in character, involving limits as message lengths L → ∞.
Remarkably, [20] shows that these asymptotically optimal
values are also achieved exactly when the message length
parameter L is any integer multiple of NK . However, since in
practice the message length parameter L can be arbitrary, an
important question that remains open is to determine optimal
download cost and rate values for arbitrary fixed values of L,
in particular when L is not an integer multiple of NK . In
this work, we explore the minimum download cost across all
PIR schemes (not restricted to linear schemes) for arbitrary
message lengths under arbitrary choices of alphabet (not re-
stricted to finite fields) for the message and download symbols.
If the same M -ary alphabet is used for the message and
download symbols, then we show that the optimal download
cost in M -ary symbols is DL = dLC e. If the message symbols
are in M -ary alphabet and the downloaded symbols are in
M ′-ary alphabet, then we show that the optimal download
cost in M ′-ary symbols, DL ∈

{⌈
L′

C

⌉
,
⌈
L′

C

⌉
− 1,

⌈
L′

C

⌉
− 2
}

,
where L′ = dL logM ′Me. Correspondingly, the maximum
achievable rate is automatically characterized in every case
as L/DL.

Notation: N is the set of natural numbers. For in-
tegers Z1, Z2, Z1 ≤ Z2, we use the compact notation
[Z1 : Z2] = {Z1, Z1 + 1, · · · , Z2}. Similarly, A[Z1:Z2]

4
=

{AZ1
, AZ1+1, · · · , AZ2

} for any variable A. The notation
X ∼ Y is used to indicate that X and Y are identically
distributed. The notation |A| is used to denote the cardinality
of a set when A is a set, and the length of a tuple when A is a
tuple. For sets S1, S2, we define S1/S2 as the set of elements
that are in S1 and not in S2. For a permutation function
λ(·) applied to some l-tuple U = (U(1), U(2), · · · , U(l)),
we will allow some abuse of notation to write λ(U) =
(U(λ(1)), U(λ(2)), · · · , U(λ(l))).

1We will use the symbol C to represent the expression in (1) throughout
this paper.

2

II. PROBLEM STATEMENT

There are K messages W1, · · · ,WK , each of which is an
arbitrary string of length L comprised of M -ary symbols.

Wk =
(
Wk(1),Wk(2), · · · ,Wk(L)

)
∈ [0 : M − 1]L

∀k ∈ [1 : K] (2)

Note that there are ML possible distinct realizations of each
message. Note that message realizations are arbitrary, i.e.,
we do not enforce any statistical assumption on the message
symbols.
There are N databases. Each database stores all the messages
W1, · · · ,WK .

Depending upon the desired message index θ ∈ [1 : K], the
user follows one of K strategies. These strategies are specified
in terms of KN random queries, Q[θ]

n , ∀n ∈ [1 : N],∀θ ∈
[1 : K] that are privately generated by the user a-priori, i.e.,
without any knowledge of the message realizations. In order to
retrieve Wθ, the user sends the query Q[θ]

n to the n-th database,
∀n ∈ [1 : N].

Upon receiving Q[θ]
n , the n-th database returns an answering

string A
[θ]
n , which is a function of Q[θ]

n and the data stored
(i.e., messages W1, · · · ,WK). The answering string A

[θ]
n is

comprised of M ′-ary symbols, A[θ]
n ∈ [0 : M ′ − 1]|A

[θ]
n |.

From all the information that is now available to the
user (A[θ]

[1:N], Q
[θ]
[1:N]), he must be able to correctly decode

the desired message Wθ. That is, the following correctness
constraint must be satisfied.

[Correctness] Wθ is a deterministic function of A[θ]
[1:N], Q

[θ]
[1:N]. (3)

To protect the user’s privacy, the query presented to each
database must be identically distributed regardless of the
desired message index.

[Privacy] Q[θ]
n ∼ Q[θ′]

n , ∀θ, θ′ ∈ [1 : K], n ∈ [1 : N]. (4)

Note that the databases do not collude so that the privacy
constraint (4) is specified with respect to each individual
database.
The download cost, D, for a PIR scheme is the maximum
value (across all random realizations of queries) of the total
number of M ′-ary symbols downloaded by the user from all
the databases.

D = max

N∑
n=1

|A[θ]
n | (5)

Our goal is to characterize the optimal (minimum over all PIR
schemes) download cost DL, for arbitrary fixed message size
L. The optimality is across all PIR schemes, i.e., including
non-linear PIR schemes.

III. RESULTS

A. Optimal Download Cost for Matching Alphabet (M = M ′)

Consider the setting where the messages and downloads
are comprised of symbols from the same alphabet, i.e., M =
M ′ ∈ N/{1}. Our main result for this setting appears in the
following theorem.

Theorem 1: For PIR with N ∈ N databases, each storing all
K ∈ N messages, each message comprised of L ∈ N symbols
from M -ary alphabet, M ∈ N/{1}, where the downloads are
comprised of symbols from the same M -ary alphabet, the
optimal download cost is DL =

⌈
L
C

⌉
M -ary symbols.

The proof of converse (i.e., the impossibility claim) of The-
orem 1 follows from the capacity result of [20] and appears
in Section IV. The achievability is proved, first for the case
L = NK−1 in Section V, and then for arbitrary L in Section
VI.

Based on Theorem 1, the following observations are in
order.

1) Given the message size and alphabet constraints, since
the minimum download cost corresponds to the max-
imum rate, Theorem 1 equivalently characterizes the
optimal rate for arbitrary message size in the matching
alphabet case, as L/dLC e.

2) Reference [11] shows that when K ≥ 2 and N ≥ L+1,
then the optimal download is DL = L + 1. This result
can be recovered as a special case of Theorem 1 by
noting that when K ≥ 2 and N ≥ L+ 1,

DL =

⌈
L

C

⌉
(6)

= L+

⌈
L

(
1

N
+

1

N2
+ · · ·+ 1

NK−1

)⌉
(7)

= L+ 1 (8)

where (8) follows because 0 < 1
N + 1

N2 + · · ·+ 1
NK−1 <

1
N−1 ≤

1
L . Theorem 1 completes the picture by charac-

terizing the optimal download cost for all N,K,L.
3) Reference [20] presents a PIR scheme which achieves a

rate equal to capacity C if L = nNK where n ∈ N is
any positive integer, so that the corresponding download
is D = L

C . This result can be recovered as a special case
of Theorem 1 by noting that when L = nNK , then L

C =
nNK(1 + 1/N + · · ·+ 1/NK−1) = nN(1 +N + · · ·+
NK−1) is a positive integer so that DL =

⌈
L
C

⌉
= L

C .
4) A naive extension of the PIR scheme of [20] to the

setting when L is not an integer multiple of NK , is
obtained by padding zeros to each message so that the
message lengths are rounded up to the closest integer
multiple of NK . The gap between the download cost
of the naive scheme and the optimal download cost in
Theorem 1 can be unbounded. For an example, if L =
NK−1, then the download cost of the naive scheme is
D = NK/C, while the optimal download cost is DL =⌈
L
C

⌉
= NK−1/C.

5) In the absence of any constraints on message lengths,
we know from [20] that the maximum achievable rate
across all PIR schemes is the capacity C. For constrained
message length L, Theorem 1 shows that the maximum
achievable rate is L/DL = L/

⌈
L
C

⌉
which is in general

less than C. The message length L = NK−1 is par-
ticularly significant in light of Theorem 1, because this
is the shortest message length for which the achieved
rate equals the capacity C. This is seen as follows. In
order to achieve the capacity, the download cost must be

3

D = L
C = DL which must be a positive integer value.

But if L < NK−1, then

D =
L

C
= L

(
1 +

1

N
+ · · ·+ 1

NK−1

)
(9)

= L

(
1 +N + · · ·+NK−1

NK−1

)
/∈ N (10)

because NK−1 and 1 +N + · · ·+NK−1 are co-prime.
This is verified, e.g., through Bezout’s identity,

NK−1(N) + (1 +N + · · ·+NK−1)(1−N) = 1 (11)

B. Optimal Download Cost for Mismatched Alphabet (M 6=
M ′)

Now consider PIR schemes with mismatched alphabet, i.e.,
the messages are represented in M -ary alphabet, and the
downloaded symbols are in M ′-ary alphabet, M ′ 6= M . For
this setting the optimal download cost to within 2 symbols is
characterized in the following theorem.

Theorem 2: For PIR with N ∈ N databases, each storing
all K ∈ N messages, each message comprised of L ∈ N
symbols from M -ary alphabet, M ∈ N/{1}, where the
downloads are comprised of symbols from M ′-ary alphabet,
M ′ ∈ N/{1}, M ′ 6= M , the optimal download cost DL ∈{⌈

L′

C

⌉
,
⌈
L′

C

⌉
− 1,

⌈
L′

C

⌉
− 2
}

, where L′ = dL logM ′Me.
The proof of Theorem 2 appears in Section VII.

The following observations place Theorem 2 in perspective.
1) The proof of Theorem 2 presented in Section VII

shows that the download cost
⌈
dL logM′ Me

C

⌉
is always

achievable, and the download cost for any PIR scheme
cannot be less than dL logM′ M

C e. Therefore, in particular,
when

⌈
dL logM′ Me

C

⌉
= dL logM′ M

C e, the exact optimal

download cost is DL = dL logM′ M
C e.

2) It is easy to create examples where mismatched alphabet
leads to less efficient PIR schemes than possible with
matched alphabets. However, this is not always the case.
The following examples show how mismatched alphabet
can in some cases be beneficial in terms of rate relative
to matched alphabet. Consider N = 2,K = 2, L =
3,M = 9. Here C = 2/3. The highest rate achievable
with matched alphabet (M ′ = M) is L

dL/Ce = 3/5 < C
whereas the rate achieved with the mismatched alphabet
M ′ = 3 < M , is L logM′ M

dL′/Ce = 2/3 = C. Similarly
one can construct examples with M ′ > M where
mismatched alphabet produces a higher rate than the
best possible with matched alphabet, e.g., N = 2,K =
2, L = 3,M = 4 where the best rate with matched
alphabet is again 3/5 < C, but the mismatched alphabet
M ′ = 8 achieves rate 2/3 = C.

IV. PROOF OF THEOREM 1: CONVERSE

The converse for Theorem 1 is the impossibility claim, i.e.,
that no PIR scheme with matched alphabet (M = M ′) can
achieve a download cost smaller than DL = dLC e. This is
proved as follows.

The message realizations are arbitrary, as is the choice of
the desired message index θ ∈ [1 : K]. By arbitrary, what is
meant is that all realizations are possible. Therefore the PIR
scheme must work for every possible realization of message
symbols and θ. Any PIR scheme that works for arbitrary
realizations, will also work if they are uniformly randomly
generated. Therefore, for the converse argument let us assume
uniform distributions on the realizations of message symbols,
and on θ. The advantage of assigning a distribution to these
arbitrary quantities is that we are able to use the information
theoretic formulation of the PIR problem as in [20], and
the upper bounds on rate that are derived in [20] are also
applicable in our current setting. In particular, C is still an
upper bound on the achievable rate of a PIR scheme with
arbitrary message realizations and θ and arbitrary message
length L. Since capacity is an upper bound on the rate of
all PIR schemes, C ≥ L/DL, so that DL ≥ L

C , and because
DL ∈ N, we must have DL ≥

⌈
L
C

⌉
.

V. PROOF OF THEOREM 1:
ACHIEVABILITY FOR L = NK−1

In [20], it is shown that the capacity (and the corresponding
optimal download cost) of PIR is achievable when L = NK

bits. Here we present a more efficient PIR scheme to show
that a smaller message size, L = NK−1 bits (M -ary symbols
in general), is sufficient to achieve a rate equal to C (and the
optimal download cost) when the alphabets are matched, i.e.,
M = M ′. This PIR scheme is significant because (as noted
in Observation 5, Section III-A) L = NK−1 is the smallest
message size needed to achieve capacity, and also because
it is the key ingredient that will allow us to subsequently
expand the achievability proof to arbitrary L in Section VI.
Note that since the N = 1 case is trivial (optimal to download
all messages), we will consider only N ≥ 2 in this section.

The PIR scheme that we present here is closely related to
the capacity achieving PIR scheme presented in [20]. For both
schemes the queries are comprised only of sums of symbols
from various messages. Since our new scheme considers M -
ary alphabet, the “sums” are interpreted as modulo-M sums. In
both schemes no symbol appears more than once in the query
for any particular database. The difference between the two
schemes lies in the requirement of symmetry across databases.
Recall that the PIR scheme of [20] is based on the iterative
application of three steps corresponding to symmetry across
databases, symmetry across messages within the query to each
database, and exploiting side information. The key to reducing
the message size from L = NK to L = NK−1 is to eliminate
the requirement of symmetry across databases. Therefore, the
new PIR scheme for L = NK−1, formalized in the Q-Gen
Algorithm in Section V-D, is based on the iterative application
of the following two steps.

(1) Enforcing Message Symmetry within the Queries to Each
Database: The goal is to make the queries to a database
symmetric with respect to messages. For instance if
the query to database 1 includes l instances of sums
of symbols from messages W1,W2,W3, then it must
include l instances of sums of symbols from each of the

4

(
K
3

)
combinations of 3 messages. Message symmetry

is defined formally in Section V-B. The procedure is
formalized in the M-Sym Algorithm, presented in Sec-
tion V-C. All the queries that do not involve desired
message symbols (I terms in the Q-Gen Algorithm) are
introduced only through the M-Sym algorithm.

(2) Exploiting Side Information: The goal of this step is to
exploit queries from other databases that were added to
enforce message symmetry (and do not contain desired
message symbols), as side information to construct
new queries which are sums of symbols from desired
message and the side information available from other
databases. This step is formalized in the Exploit-SI
Algorithm, presented in Section V-C. Except for an
initialization step, all the queries involving desired mes-
sage symbols (M terms in the Q-Gen Algorithm) are
introduced only through the Exploit-SI algorithm.

Let us start with a few simple examples for small K,N values
to illustrate the key ideas.

A. Examples

K = 2 Messages, N = 2 Databases, L = NK−1 = 2 Sym-
bols Per Message: Let [a1, a2] represent a random permutation
of L = 2 symbols from W1. Similarly, let [b1, b2] represent
an independent random permutation of L = 2 symbols from
W2. The key to the privacy of the scheme is that these
random permutations are generated privately by the user and
are unknown to the databases.

Suppose the desired message is W1, i.e., θ = 1. The PIR
scheme always starts by requesting the first desired symbol
(in this case, a1) from the first database (DB1). Applying
Step (1), we achieve message symmetry by including b1 from
DB1. Next we apply Step (2) to exploit the side information
available at DB1, i.e., b1, in order to retrieve a new desired
symbol a2 from the second database (DB2) by mixing it with
b1. At this point the query to each database is symmetric, and
there is no side information that remains unexploited. Thus
the construction is complete.

DB1 DB2

a1

(1)−→ DB1 DB2

a1, b1

(2)−→ DB1 DB2

a1, b1 a2 + b1

Similarly, the queries for θ = 2 are constructed as follows.

DB1 DB2

b1

(1)−→ DB1 DB2

a1, b1

(2)−→ DB1 DB2

a1, b1 a1 + b2

Note that the application of Step (1) only introduces new terms
that do not involve symbols from the desired message, whereas
the application of Step (2) only introduces new terms that
involve symbols from the desired message.

To see why this scheme is private, recall that [a1, a2] are
random permutations of two symbols from W1 and [b1, b2]
are random permutations of two symbols from W2. These
permutations are known only to the user, and not to the
databases. Therefore, regardless of whether θ = 1 or θ = 2,
DB1 is asked for one randomly chosen symbol of each
message, and DB2 is asked for a sum of a pair of randomly
chosen symbols from each message. Since the permutations

are uniform, all possible realizations are equally likely, and
privacy is guaranteed. A formal proof of privacy for the general
setting appears in Section V-F.

The scheme is correct, because each desired message sym-
bol is either downloaded directly or as a sum with side
information terms that are separately downloaded.

Finally, note that the download cost is D = 3 = dLC e,
because C = 2/3 for this case. The rate achieved is L/D =
2/3 = C.
K = 3 Messages, N = 2 Databases, L = NK−1 = 4

Symbols Per Message: Let [a1, · · · , a4] represent a random
permutation of 4 M -ary symbols from message W1. Similarly,
[b1, · · · , b4] and [c1, · · · , c4] are random permutations of 4 M -
ary symbols each from messages W2,W3, respectively. The
uniformly random and independent permutations are generated
privately by the user. Suppose θ = 1. The query generation
algorithm proceeds as follows.

DB1 DB2

a1

(1)−→ DB1 DB2

a1, b1, c1

(2)−→
DB1 DB2

a1, b1, c1 a2 + b1
a3 + c1

(1)−→

DB1 DB2

a1, b1, c1 a2 + b1
a3 + c1
b2 + c2

(2)−→

DB1 DB2

a1, b1, c1 a2 + b1
a4 + b2 + c2 a3 + c1

b2 + c2

Again, note that the application of Step (1) only introduces
new terms that do not involve symbols from the desired
message, whereas the application of Step (2) only introduces
new terms that involve symbols from the desired message. The
queries generated when θ = 2, 3 are as follows.

θ = 2 θ = 3
DB1 DB2

a1, b1, c1 a1 + b2
a2 + b4 + c2 b3 + c1

a2 + c2

DB1 DB2

a1, b1, c1 a1 + c2
a2 + b2 + c4 b1 + c3

a2 + b2

Correctness is straightforward, privacy is ensured by message
symmetry and random permutations, and the rate is L/D =
4/7 which matches the capacity C for this case. The download
achieved is D = 4 symbols which is also optimal.
K = 3 Messages, N = 3 Databases, L = NK−1 = 9 Sym-

bols Per Message: Let [a1, · · · , a9], [b1, · · · , b9], [c1, · · · , c9]
be three i.i.d. uniform permutations of symbols from messages
W1,W2,W3, respectively. The query generation algorithm for
θ = 1 proceeds as follows.

DB1 DB2 DB3

a1

(1)−→ DB1 DB2 DB3

a1, b1, c1
· · ·

· · · (2)−→
DB1 DB2 DB3

a1, b1, c1 a2 + b1 a4 + b1
a3 + c1 a5 + c1

· · ·

· · · (1)−→

DB1 DB2 DB3

a1, b1, c1 a2 + b1 a4 + b1
a3 + c1 a5 + c1
b2 + c2 b3 + c3

· · ·

5

· · · (2)−→

DB1 DB2 DB3

a1, b1, c1 a2 + b1 a4 + b1
a6 + b2 + c2 a3 + c1 a5 + c1
a7 + b3 + c3 b2 + c2 b3 + c3

a8 + b3 + c3 a9 + b2 + c2

Again, note that the application of Step (1) only introduces
new terms that do not involve symbols from the desired
message, whereas the application of Step (2) only introduces
new terms that involve symbols from the desired message. The
scheme when θ = 2, 3 is as follows.

θ = 2
DB1 DB2 DB3

a1, b1, c1 a1 + b2 a1 + b4
a2 + b6 + c2 b3 + c1 b5 + c1
a3 + b7 + c3 a2 + c2 a3 + c3

a3 + b8 + c3 a2 + b9 + c2

θ = 3
DB1 DB2 DB3

a1, b1, c1 a1 + c2 a1 + c4
a2 + b2 + c6 b1 + c3 b1 + c5
a3 + b3 + c7 a2 + b2 a3 + b3

a3 + b3 + c8 a2 + b2 + c9

Correctness is straightforward, privacy is ensured by mes-
sage symmetry and random permutations, and the rate is
L/D = 9/13 which matches the capacity C for this case.
The download achieved is D = 13 symbols which is also
optimal.

Next we go beyond the simple examples to the general
N,K setting. Let us start by introducing some new definitions
and notation, some of which is needed only to suppress those
aspects of the general setting that are notationally cumbersome
but otherwise inconsequential.

B. Definitions and Additional Notation

[Uk] For all k ∈ [1 : K], define2 ordered tuples

Uk , [Uk(1), Uk(2), · · · , Uk(NK−1)] (12)

[k-sums, Types] We use the terminology k-sum to denote
an expression representing the sum of k distinct variables,
each drawn from a different Ui tuple, i.e., Ui1(j1)+Ui2(j2)+
· · · + Uik(jk), where i1, i2, · · · , ik ∈ [1 : K] are all distinct
indices. Furthermore, we will define such a k-sum to be of
type {i1, i2, · · · , ik}, or i[1:k] in our compact notation. If
q represents a k-sum, the function type(q) returns its type.
Denote Tk as the set of all possible types of a k-sum, i.e.,
all possible choices of k distinct indices in [1 : K]. Note that
|Tk| =

(
K
k

)
.

The next two items are introduced to facilitate a compact
notation. The first of these is a function, new(·), which will
allow us to suppress unimportant details about symbol indices.

2The Uk symbols will eventually be mapped to random permutations of
message Wk symbols. We use [Uk(l)] instead of, say [al], [bl] as in the
examples, because while the latter notation is more clear, it does not generalize
to K messages.

[The new(·) Function] For any ordered tuple U , let new(U)
be a function that, starting with U(1), returns the “next”
element in U each time3 it is called with the same tuple U as
its argument. So, for example, the following sequence of calls
to this function: new(U2),new(U1),new(U1),new(U1) +
new(U2) will produce U2(1), U1(1), U1(2), U1(3) +U2(2) as
the output.

[Ordered Access to Elements of a Set] In a similar spirit, for
any set A, when accessing its elements (e.g., in an algorithm),
we will use the notation

−→
A to indicate that the elements of

A are to be accessed in some specified order, the details
of which are not significant, because all ordering rules will
produce (possibly different) optimal PIR schemes. Let us
assume by default that the ordering is the natural lexicographic
increasing order. For example,

−−−−→
[1 : K] refers to increasing

order of integers 1 through K.
−→
Tk denotes that the types, i.e.,

the {i1, i2, · · · , ik} terms in Tk are individually sorted and
then accessed in lexicographic increasing order. For a set Q
that is comprised of various k-sums the notation

−→
Q represents

that the order in which the elements are accessed is, first in
increasing order of k, then within the same k in increasing
order of type, and then for multiple instances of the same
type the elements are accessed in increasing order of the j
index of the Ui(j) with the smallest i. Some examples of this
notation:⋃
k∈
−−→
[1:2]

{U1(k) + new(U2)} = {U1(1) + U2(1), U1(2) + U2(2)}

⋃
q∈
−→
Q

{q + new(U1)} = {U1(1) + U2(4), U1(2) + U2(2) + U3(3),

U1(3) + U2(3) + U3(2)}

where Q = {U2(2) + U3(3), U2(4), U2(3) + U3(2)}, so that−→
Q denotes that the terms of Q are accessed in the order
U2(4), U2(2) + U3(3), U2(3) + U3(2).

[The Count(·) and Max(·) Functions] Count(Q, i[1:k]) de-
notes the number of k-sums of type {i1, i2, · · · , ik} that are
present in Q

Count(Q, i[1:k])
4
= |{q : q ∈ Q, type(q) = i[1:k]}|, (13)

Max(Q, k) denotes the maximum of the number of k-sums of
the same type in Q, with the maximization being across all
types of k-sums,

Max(Q, k)
4
= max
i[1:k]∈Tk

Count(Q, i[1:k]) (14)

[Message Symmetry] Message symmetry is defined as the
condition that ∀k ∈ [1 : K], Q contains equal number of
k-sums for every type {i1, i2, · · · , ik} ∈ Tk.

Count(Q, i[1:k]) = Count(Q, i′[1:k]), ∀i[1:k], i′[1:k] ∈ Tk
(15)

3We will deal with NK−1-tuples and the algorithms will guarantee that
the new(.) function is not called more than NK−1 times for the same tuple.

6

C. Two Subroutines

For the sake of clarity, here we separately present the two
procedures needed to implement the message symmetry and
side information exploitation steps, which will ultimately be
incorporated into the overall query generation algorithm.

1) Algorithm (1): Achieving Message Symmetry (M-Sym
Algorithm): The algorithm takes as input a set Q comprised
of various k-sums, and produces as output a set Q∗ comprised
of additional terms that need to be included in Q to make it
message symmetric, i.e., Q∪Q∗ satisfies message symmetry.
For each k ∈ [1 : K], and for each type i[1:k] ∈ Tk, the
algorithm checks if there are Max(Q, k) instances of that
type, and if not, then it generates as many new instances as
necessary to bring up the number of instances of that type to
Max(Q, k).

Algorithm (1) M-Sym Algorithm.
1: Input: Q
2: Output: Q∗
3: Initialize: Q∗ ← ∅.
4: for k = 1 : K do
5: for each i[1:k] ∈

−→
Tk do

6: if Count(Q, i[1:k]) < Max(Q, k) then
7: for i = 1 : Max(Q, k)− Count(Q, i[1:k]) do
8:

Q∗ ← Q∗ ∪ {new(Ui1) + new(Ui2) + · · ·+ new(Uik)}

9: end for (i)
10: end if
11: end for (i[1:k])
12: end for (k)

Note that Q∪Q∗ satisfies message symmetry because for all
types i[1:k] ∈ Tk, Count(Q ∪Q∗, i[1:k]) = Max(Q ∪Q∗, k) =
Max(Q, k).

To illustrate the M-Sym Algorithm, let us revisit the exam-
ples presented earlier in Section V-A. In all three examples,
when invoking Step (1), we run the M-Sym Algorithm once
for each database. For example, consider the third example
with K = 3 messages, N = 3 databases, and desired message
index θ = 1. When we invoke Step (1) for the second
time, consider DB2. The input to the M-Sym Algorithm is
Q = {a2 + b1, a3 + c1}, which is not yet symmetric, and
the output of the M-Sym Algorithm is Q∗ = {b2 + c2},
whose union with Q is now symmetric. The symmetry of the
messages is important to prove the privacy of the PIR scheme
(see Lemma 3).

2) Algorithm (2): Exploiting Side Information (Exploit-SI
Algorithm): Algorithm (2) formalizes the side information
exploitation step. This algorithm takes as input N query sets
Q1, Q2, · · · , QN , which are comprised of side information
terms, i.e., terms that do not contain any desired message sym-
bols, i.e., ∀n ∈ [1 : N] and ∀q ∈ Qn, θ /∈ type(q) and which
have not previously been exploited. The algorithm produces
N sets Q′1, Q

′
2, · · · , Q′N as output. Q′n, n ∈ [1 : N] is built by

combining each element q in Q1, · · · , Qn−1, Qn+1, · · · , QN

with a “new” variable Uθ (which corresponds to a desired
message symbol).

Algorithm (2) Exploit-SI Algorithm.
1: Input: Q1, Q2, · · · , QN
2: Output: Q′1, Q′2, · · · , Q′N
3: Initialize: All output are initialized as null sets.
4: for n = 1 : N do
5: for n′ = 1 : N and n′ 6= n do
6: for each q ∈

−−→
Qn′ do

7:
Q′n ← Q′n ∪ {new(Uθ) + q}

8: end for (q)
9: end for (n′)

10: end for (n)

To illustrate the Exploit-SI Algorithm, let us revisit the
examples presented earlier in Section V-A. In all three exam-
ples, when invoking Step (2), we run the Exploit-SI Algorithm
once. For example, consider the third example with K = 3
messages, N = 3 databases and desired message index θ = 1.
When we invoke Step (2) for the second time, the input to the
Exploit-SI Algorithm is Q1 = {∅}, Q2 = {a2+b1, a3+c1, b2+
c2}, Q3 = {a4 + b1, a5 + c1, b3 + c3}, and the output of the
Exploit-SI Algorithm is Q′1 = {a6+b2+c2, a7+b3+c3}, Q′2 =
{a8 + b3 + c3}, Q′3 = {a9 + b2 + c2}, where each side
information symbol from other databases is used to retrieve
a new desired symbol. The exploitation of side information is
important for the efficiency of the PIR scheme such that the
rate achieved matches the capacity (see Lemma 2).

D. A Deterministic Query Generation Algorithm (Q-Gen Al-
gorithm)

We now proceed to a query generation algorithm.4 The al-
gorithm produces N query sets Q(DB, θ), for all DB ∈ [1 : N]
as functions of θ. For internal book-keeping in the algorithm,
we will partition each query set into K subsets called blocks,
such that block k ∈ [1 : K] contains only k-sums. Further
we will partition each block into two subsets denoted by I
andM such that theM partition contains only those types of
k-sums which involve variables from Uθ, and the I partition
contains the remaining k-sums which do not involve the Uθ
variables.

As in the simple examples presented earlier, for all DB ∈
[1 : N], θ ∈ [1 : K], the query sets Q(DB, θ) are built
starting only from a single element in Q(1, θ), which is the first
desired message symbol Uθ, and then evolves through iterative
application of the M-Sym and Exploit-SI sub-routines. Note
that the memory of calls to the new(·) function is assumed to
be global, i.e., the memory is not reset when the sub-routines

4Note that this is not the final step in the query generation. The output
of this deterministic algorithm is in terms of the Uk variables. The final
step, to be presented in Section V-E, maps Uk variables to private random
permutations of Wk variables, to produce the random queries that are then
sent to the databases.

7

are called. Similarly, θ is assumed to be available to the sub-
routines as a global variable.

Algorithm (3) Q-Gen Algorithm.
1: Input: θ
2: Output: Q(1, θ), · · · , Q(N, θ)
3: Initialize: All query sets are initialized as null sets. Also

initialize Block← 1;
4:

Q(1, θ,Block,M)← {new(Uθ)}
Q(1, θ,Block, I)← M-Sym(Q(1, θ,Block,M))

∀DB ∈ [2 : N], Q(DB, θ,Block,M)← ∅,
Q(DB, θ,Block, I)← ∅,

5: for Block = 2 : K do
6:

(Q(1, θ,Block,M), · · · , Q(N, θ,Block,M))←

Exploit-SI(Q(1, θ,Block−1, I), · · · , Q(N, θ,Block−1, I))

7: for DB = 1 : N do
8:

Q(DB, θ,Block, I)← M-Sym(Q(DB, θ,Block,M))

9: end for (DB)
10: end for (Block)
11: for DB = 1 : N do
12: Q(DB, θ)←

⋃
Block∈[K]

(
Q(DB, θ,Block, I)∪

Q(DB, θ,Block,M)
)

13: end for (DB)

To illustrate the Q-Gen Algorithm, let us revisit the ex-
amples presented earlier in Section V-A. Consider the third
example with K = 3 messages, N = 3 databases and desired
message index θ = 1. For Block = 1, the queries for DB1 are
generated as Q(1, θ,Block,M) = {a1}, Q(1, θ,Block, I) =
{b1, c1}. For Block = 2 and Block = 3, we first exploit side
information to retrieve more desired symbols, and then make
the queries to each database symmetric to restore the privacy.
We end at Block 3 because all side information is used and
the queries to each database satisfy symmetry.

Based on Algorithm (3), we have two immediate observa-
tions.

1) Consider the number of instances with type
{i1, · · · , ik−1, θ} in Q(DB, θ, k,M), i.e.,

Count(Q(DB, θ, k,M), {i1, · · · , ik−1, θ}).

Q(DB, θ, k,M) is produced in Step 6 of Algorithm (3)
as one of the outputs of the Expoit-SI algorithm. From
Step 7 of the Expoit-SI algorithm, we know that the
instances with type {i1, · · · , ik−1, θ} in Q(DB, θ, k,M)
are produced by combining a new variable from Uθ with

each element of type {i1, · · · , ik−1} in Q(DB′, θ, k −
1, I),DB′ 6= DB, i.e.,

Count(Q(DB, θ, k,M), {i1, · · · , ik−1, θ})

=
∑

DB′ 6=DB

Count(Q(DB′, θ, k − 1, I), {i1, · · · , ik−1})

∀DB ∈ [1 : N], θ ∈ [1 : K], k ∈ [2 : K],

{i1, · · · , ik−1} ∈ Tk−1 (16)

2) From Step 4 and Step 8 of Algorithm (3), we know that
Q(DB, θ, k, I) ∪ Q(DB, θ, k,M),∀k ∈ [1 : K] satisfies
message symmetry (15).

Structure of Q(DB, θ): Key properties of Q(DB, θ) are
summarized in the following lemma.

Lemma 1: Q(DB, θ) produced by Algorithm (3) satisfies the
following properties.

1) Q(DB, θ),∀DB ∈ [1 : N], θ ∈ [1 : K] is a union of
K disjoint sets (called “blocks”), that are indexed by
k ∈ [1 : K]. Block k only contains k-sums. For any
type i[1:k] ∈ Tk, block k of Q(DB, θ) contains v(DB, k)
instances of type i[1:k], where v(DB, k) is a function only
of DB, k.

2) ∀i ∈ [1 : K], if Ui(j) and Ui(j
′) appear anywhere in

the same Q(DB, θ) then j 6= j′.
3) Exactly v(DB)

4
=
∑K
k=1 v(DB, k)

(
K−1
k−1

)
distinct vari-

ables for each Ui, i ∈ [1 : K] appear in Q(DB, θ).
Proof:
1) Block k, k ∈ [1 : K] of Q(DB, θ) is the set

Q(DB, θ, k, I) ∪ Q(DB, θ, k,M), which satisfies mes-
sage symmetry based on Observation 2. From Step 4
of Algorithm (3), we know that Block 1 only contains
1-sums. From Steps 6 and 8, we know that the type
of each instance in Block k, k ∈ [2 : K] contains one
more variable than that of any instance in Block k − 1.
Therefore, by induction, Block k only contains k-sums.
As each Block k satisfies message symmetry, we have

Count(Q(DB, θ, k,M), {i1, · · · , ik−1, θ})
= Max(Q(DB, θ), k) (17)

Count(Q(DB, θ, k − 1, I), {i1, · · · , ik−1})
= Max(Q(DB, θ), k − 1) (18)

and (16) reduces to

Max(Q(DB, θ), k) =
∑

DB′ 6=DB

Max(Q(DB′, θ), k − 1)

(19)

Combined with the fact that Max(Q(1, θ), 1) =
1,Max(Q(DB, θ), 1) = 0,∀DB ∈ [2 : N] (obtained
from Step 4 of Algorithm (3)), we conclude that
Max(Q(DB, θ), k) depends only on DB and k. Therefore,
v(DB, k) = Max(Q(DB, θ), k) and v(DB, k) is a function
of only DB, k.

2) Fix any database DB. Consider the case where i =
θ first. Note that desired variables only appear in
Q(DB, θ,Block,M). From Step 4 and Step 6 in Algo-
rithm (3), we see that the desired variables, i.e., the Uθ

8

variables appear only through the new(Uθ) function so
that each of them has a distinct index. Next, consider the
non-desired variables, Ui, i 6= θ, which either appear in
Steps 4 and 8 through the new(Uk) function or appear in
Step 6 which in turn come from Q(DB, θ,Block−1,M)
and each of them was introduced once through the
new(Uk) function and used exactly once. Therefore,
these Uk variables also have distinct indices within
Q(DB, θ).

3) This claim follows directly from the previous two
claims. Note that we have shown that all variables from
Ui are distinct, so v(DB) is equal to the number of
times that variables in Ui appear in Q(DB, θ). In the k-th
block, Q(DB, θ) contains v(DB, k) instances of k-sums
of each type and there are

(
K
k−1
)

types of k-sums that
include i. Therefore, the number of instances of tuple
Ui in block k is v(DB, k)

(
K−1
k−1

)
. Summing over all K

blocks, we have v(DB) =
∑K
k=1 v(DB, k)

(
K−1
k−1

)
.

According to Lemma 1 the query sets Q(DB, θ) are com-
prised of K blocks, the k-th block contains v(DB, θ) instances
of every possible type of k-sum, and no Ui(j) variable appears
more than once in Q(DB, θ). Therefore, the structure of the
query set may be summarized in the following corollary.

Corollary 1: Given DB, θ, for every Uk, k ∈ [1 : K], there
exists its permutation Uk that depends only on DB, θ, k,

Uk , λDB,θ,k(Uk) (20)

such that Q(DB, θ) can be expressed as

Q(DB, θ) =
⋃

k∈
−−−→
[1:K]

⋃
i[1:k]∈

−→
Tk

v(DB,k)⋃
l=1

{new(U i1) + . . .

. . .new(U i2) + · · ·+ new(U ik)} (21)

Remark: As an example, consider the example with K =
3, N = 3, L = 9 that was presented earlier in Section V-A.
Suppose DB = 2, θ = 3. The query Q(DB, θ) = Q(2, 3) is
reproduced as follows.

Q(2, 3) = {a2 + b2, a1 + c2, b1 + c3, a3 + b3 + c8},

which can be equivalently written in the form in Corollary 1
by setting

λ2,3,1(U1) = (a2, a1, a3, a4, a5, a6, a7, a8, a9) (22)
λ2,3,2(U2) = (b2, b1, b3, b4, b5, b6, b7, b8, b9) (23)
λ2,3,3(U3) = (c2, c3, c8, c1, c4, c5, c6, c7, c9) (24)

Note that here U1 = [a1, · · · , a9], U2 = [b1, · · · , b9], U3 =
[c1, · · · , c9].

E. Mapping to Message Symbols to Produce Q[θ]
DB

To produce the actual query sent to the databases, we map
the Uk(i) variables to message symbols. This mapping is spec-
ified by K privately chosen permutations γ1, γ2, · · · , γK , each
of which is uniformly random over all possible (NK−1)! per-
mutations over the index set [1 : NK−1] and the permutations
are independent of each other and of θ. Specifically, Uk(i) is

replaced with Wk(γk(i)), ∀k ∈ [1 : K], i ∈ [1 : NK−1]. This
operator is denoted by Γ . For example, Γ({U1(2), U3(4) +
U5(6)}) = {W1(γ1(2)),W3(γ3(4)) + W5(γ5(6))}. After this
random mapping is applied to Q(DB, θ), we obtain the actual
query set Q[θ]

DB that is sent to database DB.

Q
[θ]
DB = “Γ

(
Q(DB, θ)

)
” (25)

We use the double-quotes notation around a symbol to repre-
sent the query about its realization. For example, while W1(1)
is the realization of one message symbol, in our notation
“W1(1)” only represents the question: “what is the value of
W1(1)?” Q[θ]

DB is a (unordered) set and the questions in the set
are sent in an order that is independent of θ (say, uniformly
random) to the databases.

F. Proof of Correctness, Privacy and Optimality

We prove that the achievable scheme is correct, private and
optimal in the following two lemmas.

Lemma 2: The PIR scheme constructed through the Q-Gen
Algorithm is correct, i.e., it satisfies (3). The message size is
L = NK−1 and the download cost is optimal, D = L

C .
Remark: L

C is an integer, so that DL = dLC e = L
C .

Proof: Note that all desired message symbols are either
retrieved directly with no interference or they appear with
interference q that is downloaded separately from another
database so it can be subtracted to retrieve the desired symbols.
Therefore, all the desired message symbols are retrievable and
the correctness constraint (3) is satisfied.

In order to compute the message size and download cost,
we proceed as follows. Using (19), we have

v(1, 1) = 1 (26)
v(DB, 1) = 0,∀DB ∈ [2 : N] (27)

v(DB, k) =
∑

DB′ 6=DB

v(DB′, k − 1),∀k ∈ [2 : K]

(28)
⇒ v(2, k) = · · · = v(N, k),∀k ∈ [2 : K] (29)

Now we know that the number of instances of each type over
each block is the same for databases 2 to N . Next we derive
the total number of instances of each type over each block
across all databases. For all k ∈ [2 : K],

v(1, k)
(28)(29)

= (N − 1)v(2, k − 1) (30)

v(2, k)
(28)(29)

= v(1, k − 1) + (N − 2)v(2, k − 1) (31)
⇒ v(1, k) + (N − 1)v(2, k)

(30)(31)
= (N − 1)v(2, k − 1)

+ (N − 1)
(
v(1, k − 1) + (N − 2)v(2, k − 1)

)
(32)

= (N − 1)
(
v(1, k − 1) + (N − 1)v(2, k − 1)

)
(33)

= · · · (34)

= (N − 1)k−1
(
v(1, 1) + (N − 1)v(2, 1)

)
(35)

(27)
= (N − 1)k−1 (36)

9

From Lemma 1, we have shown that there are v(DB) =∑K
k=1 v(DB, k)

(
K−1
k−1

)
desired variables in each Q(DB, θ).

Note that desired variables all appear through new(Uθ) so
that they are distinct across databases. Thus the message size
(the total number of desired symbols that are retrieved) is

L =

N∑
DB=1

K∑
k=1

v(DB, k)

(
K − 1

k − 1

)
(37)

(29)
=

K∑
k=1

(
v(1, k) + (N − 1)v(2, k)

)(K − 1

k − 1

)
(38)

(36)
=

K∑
k=1

(N − 1)k−1
(
K − 1

k − 1

)
(39)

=

K−1∑
k=0

(N − 1)k
(
K − 1

k

)
= NK−1 (40)

We next compute the download cost and show that the
achieved download cost is optimal, i.e., D = L

C . The k-th
block of Q(DB, θ) contains v(DB, k) instances of k-sums of
each possible type, and there are

(
K
k

)
possible types of k-sums.

Therfore, the cardinality of Q(DB, θ) is
∑K
k=1 v(DB, k)

(
K
k

)
.

Summing over all databases, we have

D =

N∑
DB=1

K∑
k=1

v(DB, k)

(
K

k

)
(29)
=

K∑
k=1

(
v(1, k) + (N − 1)v(2, k)

)(K
k

)
(36)
=

K∑
k=1

(N − 1)k−1
(
K

k

)

=

K−1∑
k=1

(N − 1)k−1
(
K

k

)
+ (N − 1)K−1

=

K−1∑
k=1

(N − 1)k−1
[(
K − 1

k − 1

)
+

(
K − 1

k

)]
+ (N − 1)K−1

=

K∑
k=1

(N − 1)k−1
(
K − 1

k − 1

)
+

K−1∑
k=1

(N − 1)k−1
(
K − 1

k

)
(40)
= NK−1 +

K−1∑
k=1

(N − 1)k−1
(
K − 1

k

)

= L+
1

N − 1

K−1∑
k=1

(N − 1)k
(
K − 1

k

)

= L+
1

N − 1

[
K−1∑
k=0

(N − 1)k
(
K − 1

k

)
− 1

]

= L+
1

N − 1
(NK−1 − 1) = L+NK−1

(
1
N −

1
NK

1− 1
N

)

= L

(
1− 1

NK

1− 1
N

)
=
L

C

Lemma 3: The PIR scheme constructed through the Q-Gen
Algorithm is private, i.e., it satisfies (4).

Proof: From Corollary 1, we know that Q(DB, θ) depends
on θ only through the permutation functions λDB,θ,k(Uk), for
each k ∈ [1 : K]. But, Uk are uniform permutations of
message symbols, Uk = γk(Wk). Because any permutation
of a uniform permutation is also uniform,

λDB,θ,k(γk(Wk))) ∼ γk(Wk). (41)

Furthermore, because γ1, γ2, · · · , γj are independent,

(λDB,θ,1(γ1(W1))), λDB,θ,2(γ2(W2))), · · · , λDB,θ,K(γK(WK))))

∼ (γ1(W1), γ2(W2), · · · , γK(WK))

Since Q(DB, θ) is a function of
(λDB,θ,1(γ1(W1))), λDB,θ,2(γ2(W2))), · · · , λDB,θ,K(γK(WK)))),
which is identically distributed for all θ ∈ [1 : K], Q(DB, θ) is
also identically distributed for all θ ∈ [1 : K]. Thus condition
(4) is satisfied and the scheme is private.

Remark: The query size of the PIR scheme to database DB
is equal to the size of the description for the permutation in
λDB,θ,k(γk(Wk))). Note that we do not attempt to optimize the
upload cost in this paper, which is possible, as shown in [20].

Remark: In all PIR schemes presented in this paper, we
assume that each database stores all K messages. So the total
storage required across all N databases is equal to KN times
the message size.

VI. PROOF OF THEOREM 1: ACHIEVABILITY FOR
ARBITRARY L

The optimal PIR scheme is a combination (analogous to
time sharing arguments in channel capacity studies) of the
capacity achieving scheme with message size L = NK−1 that
was presented in the previous section, and a PIR scheme from
[11] (see the remark on replicated storage above Section V
of [11]) which is related to blind interference alignment as
noted in [21] (see the discussion section of [21]). Since the
main objective of [11] is PIR with distributed storage, the
scheme that we need is recovered as an implicit special case
of [11] (when replication coding is used across the databases).
To make the scheme explicit, we restate this result in the
following theorem.

Theorem 3: [11] For PIR with N ≥ 2 databases, each
storing K ∈ N messages, each message comprised of L =
N −1 symbols from M -ary alphabet, M ∈ N/{1}, where the
downloads are comprised of symbols from the same M -ary
alphabet, the download cost D = N = L+ 1 M -ary symbols
is achievable.
While the scheme is implicitly contained in [11], for the sake
of completeness we give an explicit proof of Theorem 3 in
Section VI-E. We also note that the binary alphabet (M = 2)
case is considered recently in [17] (see Construction 1 of [17]).

A. Examples

To convey the main ideas let us start with some examples for
small values of K,N,L. The idea of constructing the optimal
achievable scheme is to greedily use the most efficient PIR
scheme (the capacity achieving scheme) repeatedly, and when

10

the number of remaining symbols per message is less than
required, we turn to the next most efficient scheme (the scheme
in Theorem 3), and continue to use the scheme in Theorem
3 with possibly smaller and smaller message sizes until all
symbols are considered.
K = 2 Messages, N = 2 Databases, L = 3 Symbols Per

Message: We show that the download cost D = dLC e =
d3/(2/3)e = 5 symbols is achievable. The scheme is as
follows. For each message, divide the L = 3 message symbols
into two groups, where the first group is comprised of 2
symbols and the second group is comprised of 1 symbol. For
the first group, we use the capacity achieving scheme with
message length NK−1 = 2 so that the download cost achieved
is 2/C = 3 symbols. For the second group, we use the scheme
described in Theorem 3 so that the download cost achieved is
N = 2 symbols. Adding the two, the overall download cost
is D = 5 symbols, as desired.
K = 3 Messages, N = 3 Databases, L = 25 Symbols

Per Message: We show that the download cost D = dLC e =
d25/(9/13)e = 37 symbols is achievable. The scheme is
as follows. For each message, divide the L = 25 symbols
into three groups, where the first group is comprised of 18
symbols, the second group is comprised of 6 symbols and the
third group is comprised of 1 symbol. For the first group, we
further divide the 18 symbols to 2 sub-groups, each of which
is comprised of 9 symbols. For each sub-group, we use the
capacity achieving scheme with message length NK−1 = 9 so
that the download cost achieved per sub-group is 9/C = 13
symbols. In total, the download cost for the first group is 26
symbols. Note that the second group only has 6 symbols per
message so that we can not use the capacity achieving scheme
and we turn to the scheme in Theorem 3. For the second group,
we further divide the 6 symbols to 3 sub-groups, each of which
is comprised of 2 symbols. For each sub-group, we use the
scheme described in Theorem 3 with N = 3 databases, so that
the download cost per sub-group is N = 3 symbols. In total,
the download cost for the second group is 9 symbols. Note now
that the third group only has 1 symbol per message so that even
the scheme for the second group does not apply and we turn to
the same class of scheme but with shorter (matching) message
length. For the third group, we use the scheme described in
Theorem 3 with N ′ = 2 databases (say, the first two databases)
and message size L′ = 1 symbol (matching the size of the
third group), so that the download cost achieved is N ′ = 2
symbols. Adding the download cost of the three groups up,
the overall download cost is D = 26 + 9 + 2 = 37 symbols,
as desired.

B. Description of Achievable Scheme for Arbitrary L
We now describe the general achievable scheme for arbitrary

L, following the examples presented above. We first fully use
the capacity achieving scheme with message size NK−1. To
this end, we view each NK−1 symbols as a group and proceed
until the number of symbols that remain is smaller than NK−1,

L = G1N
K−1 + L1 (42)

where G1 = b L
NK−1 c and 0 ≤ L1 ≤ NK−1 − 1. If L1 = 0,

we are done. Otherwise, for the L1 symbols that remain, we

fully use the scheme in Theorem 3 with N databases and
message size N −1. We view each N −1 symbols as a group
and proceed until the number of symbols left is smaller than
N − 1,

L1 = G2(N − 1) + L2 (43)

where G2 = b L1

N−1c and 0 ≤ L2 ≤ N − 2. If L2 = 0, we are
done. Otherwise, for the L2 ≥ 1 symbols that are left, we use
the scheme in Theorem 3 with L2 + 1 databases (say, the first
L2 + 1 ≤ N − 1 databases) and message size L2. Therefore
the message size and the achievable download cost are

L = G1N
K−1 +G2(N − 1) + L2

D =

{
G1N

K−1/C +G2N if L2 = 0
G1N

K−1/C +G2N + L2 + 1 otherwise

This completes the description of our achievable scheme.
Remark: Our achievability proofs have used three types of

schemes, i.e., the capacity achieving scheme for message size
NK−1, the scheme in Theorem 3 with message size N−1, and
the scheme in Theorem 3 with message size L2. The upload
cost (query size) of our achievable scheme is equal to the sum
of the upload cost of all three types of schemes. Note that
when we use the same type of scheme several times, we can
reuse the same query such that the upload cost does not scale
(see Proposition 4.1.1 in [2]).

C. Proof that the Scheme is Correct and Private

Since we construct our PIR scheme as a concatenation of
multiple PIR schemes, let us present the following theorem to
show that such a concatenation yields a PIR scheme that is
correct and private.

Theorem 4: For PIR with N ∈ N databases, each storing all
K ∈ N messages, each message comprised of L ∈ N symbols
from M -ary alphabet, M ∈ N/{1}, where the downloads are
comprised of symbols from the same M -ary alphabet, if there
are J ∈ N schemes with message length Lj , j ∈ [1 : J] and
download cost Dj , j ∈ [1 : J], respectively, and the message
lengths add up to L, i.e.,

∑J
j=1 Lj = L, then there exist a

PIR scheme with message length L and download cost D =∑J
j=1Dj .

Proof: The scheme is based on dividing the L message
symbols to J groups so that the j-th group is comprised of
Lj symbols per message. Then we use the given scheme with
message length Lj for the j-th group, so that the download
cost achieved is Dj symbols. Specifically, the queries for each
group are generated independently, given the same desired
message index. Combining the download cost for all J groups,
we achieve the desired download cost. We are left to prove
that this symbol sharing scheme produces a correct and private
PIR scheme.

Correctness is easy to see as the scheme for each group is
correct. Privacy is proved as follows. Consider any database
n, n ∈ [1 : N] and any desired message index θ, θ ∈ [1 : K].
Denote the query of the scheme for the j-th group as Q[θ]

n (j).
Since the scheme for the j-th group is private, we have that
Q

[θ]
n (j) ∼ Q

[θ′]
n (j), for all θ, θ′ ∈ [1 : K] and ∀j ∈ [1 : J].

Now since for any θ, the queries for each group are generated

11

independently, their joint probability distribution function is
the product of the marginal probability distribution functions,
i.e.,

Pr(Q[θ]
n (1), Q[θ]

n (2), · · · , Q[θ]
n (J))

= Pr(Q[θ]
n (1))× Pr(Q[θ]

n (2))× · · · × Pr(Q[θ]
n (J))

= Pr(Q[θ′]
n (1))× Pr(Q[θ′]

n (2))× · · · × Pr(Q[θ′]
n (J))

for all θ, θ′ ∈ [1 : K]. Therefore the overall query for all
groups is identically distributed regardless of the index of the
desired message θ, and the symbol sharing scheme is private
(4).

D. Proof that the Achieved Download Cost D = dLC e
We next show that the achievable download cost in (44)

satisfies D ∈ [LC ,
L
C + 1) so that D = dLC e. Note that in

the converse proof, we have already shown that for all PIR
schemes, D ≥ L

C holds. So we only need to prove that D <
L
C + 1. Here we have two cases.
Case 1: L2 = 0. We have

D <
L

C
+ 1 (44)

⇔ G1N
K−1/C +G2N

< (G1N
K−1 +G2(N − 1))/C + 1 (45)

⇔ G2N < G2(N − 1)/C + 1 (46)

When N = 1, we have G2 = 0 so that (46) holds. When
N ≥ 2, plugging in C = 1−1/N

1−(1/N)K
= NK−1

(
N−1
NK−1

)
, we

have

G2N < G2

(
NK − 1

NK−1

)
+ 1 (47)

⇔ G2 < NK−1 (48)

which holds because G2 = b L1

N−1c ≤ L1 ≤ NK−1 − 1 <

NK−1.
Case 2: L2 ≥ 1. Note that when L2 ≥ 1, we have N ≥ 2
such that C = 1−1/N

1−(1/N)K
. As a result,

D <
L

C
+ 1 (49)

⇔ G1N
K−1/C +G2N + L2 + 1

< (G1N
K−1 +G2(N − 1) + L2)/C + 1 (50)

⇔ G2N + L2 < (G2(N − 1) + L2)/C (51)

⇔ G2N + L2 < (G2(N − 1) + L2)

(
NK − 1

(N − 1)NK−1

)
⇔ G2

NK−1 < L2

(
NK−1 − 1

(N − 1)NK−1

)
(52)

⇔ G2(N − 1) < L2(NK−1 − 1) (53)

which is proved as follows

L2(NK−1 − 1) ≥ NK−1 − 1 (54)
≥ L1 = G2(N − 1) + L2 > G2(N − 1) (55)

Thus the proof is complete.

E. Proof of Theorem 3

We now present the scheme with download cost D = N
and message length L = N − 1. Consider

Wk =
(
Wk(1),Wk(2), · · · ,Wk(N − 1)

)
,∀k ∈ [1 : K] (56)

where each Wk(i), i ∈ [1 : N − 1] is an M -ary symbol.
The queries are specified as follows. To retrieve Wθ pri-

vately, the user first generates a random vector of length
(N − 1)K, [h1(1), · · · , h1(N − 1), · · · , hθ(1), · · · , hθ(N −
1), · · · , hK(N − 1)], where each element is uniformly dis-
tributed over {0, 1}. Then the queries are set as follows.

Q
[θ]
1 =[h1(1), · · · , hθ(1), · · · , hθ(N − 1), · · · , hK(N − 1)]

Q
[θ]
2 =[h1(1), · · · , hθ(1)⊕ 1, · · · , hθ(N − 1), · · · , hK(N − 1)]

· · ·
Q

[θ]
N =[h1(1), · · · , hθ(1), · · · , hθ(N − 1)⊕ 1, · · · , hK(N − 1)]

where ⊕ represents the modulo-2 sum. The answer from each
database is the modulo-M sum of the scalar product of each
message symbol and the corresponding coefficient in the query
vector.

A
[θ]
1 =

K∑
k=1

N−1∑
i=1

hk(i)Wk(i)

A
[θ]
2 =

K∑
k=1

N−1∑
i=1

hk(i)Wk(i) + (−1)hθ(1)Wθ(1)

· · ·

A
[θ]
N =

K∑
k=1

N−1∑
i=1

hk(i)Wk(i) + (−1)hθ(N−1)Wθ(N − 1)

The user decodes Wθ(i), i ∈ [1 : N − 1] by subtracting A
[θ]
1

from A
[θ]
i+1, with no error. Therefore, the PIR scheme is correct.

Privacy is guaranteed because each query is independent of
the desired message index θ. This is because regardless of the
desired message index θ, each query Q

[θ]
n ,∀n is individually

comprised of elements that are i.i.d. uniform over {0, 1}.
Each answer is comprised of 1 symbol, so the download

cost achieved is D = N symbols. The proof is complete.

VII. PROOF OF THEOREM 2

A. Converse

First let us prove the converse. As in the converse proof
of Theorem 1, the PIR capacity [20] provides a general
upper bound on rate, and therefore a general lower bound
on download cost for any given message length, which holds
regardless of the choice of alphabet used to represent the
messages and download symbols. For message length L and
download cost D, the rate is L log2(M)

D log2(M
′) which cannot exceed

capacity. Therefore we automatically have the lower bound on
download cost as D ≥ L log2(M)

C log2(M
′) , and because D ∈ N, we

must have

D ≥
⌈
L log2(M)

C log2(M ′)

⌉
(57)

12

B. Achievability

For the proof of achievability, let us construct a simple
(sub-optimal) PIR scheme whose download cost is nonetheless
guaranteed to be within 2 M ′-ary symbols of the lower bound.
The scheme is described as follows.

Let us map the messages from M -ary alphabet to M ′-ary
alphabet. Each message is comprised of L symbols that are
from an M -ary message alphabet, i.e., for each message there
are ML possible distinct realizations. L′ symbols from M ′-ary
alphabet are capable of representing M ′L

′
distinct realizations.

To have distinct representations for distinct message realiza-
tions, we must have M ′L

′
≥ML. For this, L′ = dL logM ′Me

is sufficient.5 Now the message symbols and the download
symbols are from the same M ′-ary alphabet, so that we can
use the PIR scheme used to establish achievability in Theorem
1 to achieve download cost D = dL

′

C e, measured in M ′-
ary download symbols. Next let us prove that even for this
simple scheme, the gap to optimality is no more than 2 M ′-
ary symbols.

Since the N = 1 case is trivial (optimal to fully download
all messages), let us assume N ≥ 2. Note that for N ≥ 2 it
is always true that C ≥ 1/2, i.e., 1/C ≤ 2. Starting with the
general upper bound (57),⌈

L′

C

⌉
≥ DL ≥

⌈
L log2(M)

C log2(M ′)

⌉
(58)

=

⌈
L logM ′(M)

C

⌉
(59)

≥
⌈
dL logM ′(M)e − 1

C

⌉
(60)

=

⌈
L′

C
− 1

C

⌉
(61)

≥
⌈
L′

C
− 2

⌉
(62)

=

⌈
L′

C

⌉
− 2 (63)

VIII. CONCLUSION

Recent work has characterized the capacity, C (supremum
of the ratio of message size over download cost, i.e., L/D)
of PIR when the message size L → ∞. In this work, we
have shown that for arbitrary fixed message size L ∈ N, when
the messages and downloads are comprised of symbols from
the same arbitrary M -ary alphabet, the optimal download cost
is DL = dLC e; and when the messages and downloads are
comprised of symbols from different alphabets (messages from
M -ary alphabet and downloads from M ′-ary alphabet, M 6=
M ′), the optimal download cost (in M ′-ary symbols) DL ∈{⌈

L′

C

⌉
,
⌈
L′

C

⌉
− 1,

⌈
L′

C

⌉
− 2
}

, where L′ = dL logM ′Me.
An interesting feature of our PIR scheme is that it allows

arbitrary M -ary alphabet (not restricted to finite fields). This
is because the scheme downloads only direct sums modulo-M

5The sub-optimality of the scheme becomes obvious here because, for
example if M ′ is much larger than M , then we could jointly code all K M -
ary messages symbols to only 1 M ′-ary message symbol, therefore download
cost of 1 M ′-ary symbol would be enough, whereas our naive scheme will
download at least 1/C symbols.

of various message symbols. As the next step in this direction
the extension to TPIR (PIR with T -privacy) may be of interest.
The capacity of TPIR for unconstrained alphabet is character-
ized in [22], and the capacity achieving scheme presented there
relies on finite field operations (multiplications) and existence
of MDS codes. PIR schemes based on finite fields can be
extended to arbitrary M -ary alphabet by decomposing M into
its prime factors and concatenating PIR schemes over the
finite fields corresponding to the prime factors. However, the
extension may be difficult when field size constraints imposed
by arbitrary M -ary alphabet are incompatible with the MDS
code requirements.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, 1995, pp. 41–50.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private Informa-
tion Retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
1998.

[3] A. Ambainis, “Upper bound on the communication complexity of pri-
vate information retrieval,” in Automata, Languages and Programming.
Springer, 1997, pp. 401–407.

[4] A. Beimel, Y. Ishai, and E. Kushilevitz, “General constructions for
information-theoretic private information retrieval,” Journal of Computer
and System Sciences, vol. 71, no. 2, pp. 213–247, 2005.

[5] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking
the O(n1/(2k−1)) barrier for information-theoretic Private Information
Retrieval,” in Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science. IEEE, 2002, pp. 261–270.

[6] S. Yekhanin, “Locally Decodable Codes and Private Information Re-
trieval Schemes,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2007.

[7] Z. Dvir and S. Gopi, “2-Server PIR with Sub-polynomial Communica-
tion,” Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC’15, pp. 577–584, 2015.

[8] A. Beimel, Y. Ishai, and T. Malkin, “Reducing the servers computation
in private information retrieval: PIR with preprocessing,” in Advances
in CryptologyCRYPTO 2000. Springer, 2000, pp. 55–73.

[9] Y. Gertner, S. Goldwasser, and T. Malkin, “A random server model
for private information retrieval,” in Randomization and Approximation
Techniques in Computer Science. Springer, 1998, pp. 200–217.

[10] G. Di-Crescenzo, Y. Ishai, and R. Ostrovsky, “Universal service-
providers for database private information retrieval,” in Proceedings of
the seventeenth annual ACM symposium on Principles of distributed
computing. ACM, 1998, pp. 91–100.

[11] N. Shah, K. Rashmi, and K. Ramchandran, “One Extra Bit of Download
Ensures Perfectly Private Information Retrieval,” in Proceedings of IEEE
International Symposium on Information Theory (ISIT), 2014, pp. 856–
860.

[12] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private Information Retrieval
for Coded Storage,” Proceedings of IEEE International Symposium on
Information Theory (ISIT), pp. 2842–2846, 2015.

[13] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with
low storage overhead,” in Proceedings of IEEE International Symposium
on Information Theory (ISIT), 2015, pp. 2852–2856.

[14] R. Tajeddine and S. E. Rouayheb, “Private Information Retrieval from
MDS Coded Data in Distributed Storage Systems,” arXiv preprint
arXiv:1602.01458, 2016.

[15] S. Rao and A. Vardy, “Lower Bound on the Redundancy of PIR Codes,”
arXiv preprint arXiv:1605.01869, 2016.

[16] S. Blackburn and T. Etzion, “PIR Array Codes with Optimal PIR Rate,”
arXiv preprint arXiv:1607.00235, 2016.

[17] T. E. Simon R. Blackburn and M. B. Paterson, “PIR schemes with small
download complexity and low storage requirements,” arXiv preprint
arXiv:1609.07027, 2016.

[18] K. Banawan and S. Ulukus, “The Capacity of Private Information
Retrieval from Coded Databases,” arXiv preprint arXiv:1609.08138,
2016.

[19] Y. Zhang, X. Wang, H. Wei, and G. Ge, “On private information retrieval
array codes,” arXiv preprint arXiv:1609.09167, 2016.

13

[20] H. Sun and S. A. Jafar, “The Capacity of Private Information Retrieval,”
arXiv preprint arXiv:1602.09134, 2016.

[21] ——, “Blind Interference Alignment for Private Information Retrieval,”
arXiv preprint arXiv:1601.07885, 2016.

[22] ——, “The Capacity of Robust Private Information Retrieval with
Colluding Databases,” arXiv preprint arXiv:1605.00635, 2016.

Hua Sun (S’12) received the B.E. degree in Communications Engineering
from Beijing University of Posts and Telecommunications, Beijing, China, in
2011, the M.S. degree in Electrical and Computer Engineering from University
of California, Irvine, in 2013. He is currently pursuing the Ph.D. degree at
the University of California, Irvine. His research interests include information
theory and its applications to communications, networking, privacy, and
storage.

He received the IEEE Jack Keil Wolf ISIT Student Paper Award in 2016,
an IEEE GLOBECOM Best Paper Award in 2016, and the University of
California Irvine CPCC fellowship for the year 2011-2012.

Syed Ali Jafar (S’99-M’04’-SM’09-F’14) received his B. Tech. from IIT
Delhi, India, in 1997, M.S. from Caltech, USA, in 1999, and Ph.D. from
Stanford, USA, in 2003, all in Electrical Engineering. His industry experience
includes positions at Lucent Bell Labs, Qualcomm Inc. and Hughes Software
Systems. He is a Professor in the Department of Electrical Engineering
and Computer Science at the University of California Irvine, Irvine, CA
USA. His research interests include multiuser information theory, wireless
communications and network coding.

Dr. Jafar is a recipient of the New York Academy of Sciences Blavatnik
National Laureate in Physical Sciences and Engineering, the NSF CAREER
Award, the ONR Young Investigator Award, the UCI Academic Senate Distin-
guished Mid-Career Faculty Award for Research, the School of Engineering
Mid-Career Excellence in Research Award, the School of Engineering Maseeh
Outstanding Research Award, the IEEE Information Theory Society Best
Paper Award, IEEE Communications Society Best Tutorial Paper Award, IEEE
Communications Society Heinrich Hertz Award, and three IEEE GLOBECOM
Best Paper Awards. His student co-authors received the IEEE Signal Process-
ing Society Young Author Best Paper Award, and the Jack Wolf ISIT Best
Student Paper Award. Dr. Jafar received the UC Irvine EECS Professor of the
Year award six times, in 2006, 2009, 2011, 2012, 2014 and 2017 from the
Engineering Students Council and the Teaching Excellence Award in 2012
from the School of Engineering. He was a University of Canterbury Erskine
Fellow in 2010 and an IEEE Communications Society Distinguished Lecturer
for 2013-2014. Dr. Jafar was recognized as a Thomson Reuters Highly Cited
Researcher and included by Sciencewatch among The World’s Most Influential
Scientific Minds in 2014, 2015 and 2016. He served as Associate Editor for
IEEE Transactions on Communications 2004-2009, for IEEE Communications
Letters 2008-2009 and for IEEE Transactions on Information Theory 2009-
2012. He is a Fellow of the IEEE.

